
The Political Methodologist
Newsletter of the Political Methodology Section

American Political Science Association
Volume 20, Number 2, Spring 2013

Editors:
Jake Bowers, University of Illinois at Urbana-Champaign

jwbowers@illinois.edu

Wendy K. Tam Cho, University of Illinois at Urbana-Champaign
wendycho@illinois.edu

Brian J. Gaines, University of Illinois at Urbana-Champaign
bjgaines@illinois.edu

Editorial Assistant:
Ashly Adam Townsen, University of Illinois at Urbana-Champaign

townsen5@illinois.edu

Contents

Notes from the Editors 1

Articles 2
Thomas J. Leeper: Crowdsourcing with R and the

MTurk API 2
Christopher Gandrud: GitHub: A tool for social

data set development and verification in the
cloud . 7

John Beieler: A Tutorial on Deploying and Using
Amazon Elastic Cloud Compute Clusters . . 16

Taylor C. Boas and F. Daniel Hidalgo: Fielding
Complex Online Surveys using rApache and
Qualtrics . 21

Dino P. Christenson and David M. Glick: Crowd-
sourcing Panel Studies and Real-Time Exper-
iments in MTurk 27

This is our last issue as editors of TPM, and, we hope,
our most exciting issue yet. We have great line-up of topics
that we hope will provide new tools for everyone’s toolbox.
Thomas Leeper unveils the programming interface behind
Amazon’s Mechanical Turk. He provides two examples of

advanced use of MTurk: content analysis and a panel sur-
vey experiment. Christopher Gandrud then explains how
GitHub offers a comprehensive data storage and collabora-
tion environment to enhance data quality and reproducible
research. He explains each of these concepts thoroughly
with a case study on data set creation and management.
Next, John Beieler gives a tutorial on how to move our com-
putation to the cloud using Amazon’s EC2 service when our
data or computation needs exceed those our of everyday
computing environment. He provides examples of how to
initiate and run an EC2 instance and explains issues with
parallel computing in R and Python in the EC2 environ-
ment. Our last two articles focus on survey data collec-
tion in the cloud. Taylor Boas and Danny Hidalgo walk us
through their implementation of a survey in Brazil using rA-
pache and Qualtrics, demonstrating how to merge the sta-
tistical capabilities of R with the useful features in survey
engines. Finally, Dino Christenson and David Glick revisit
the many possibilities of research using MTurk by giving us
a detailed account of how they implemented a panel study
using MTurk.

We are immensely grateful to our contributors in this
issue. We have learned a lot and are pleased to produce this
issue as a reference source for our ever-changing computing
and research needs. We hope that you will find this issue
spurs your research into the realm of the clouds and beyond.

The Editors

2 The Political Methodologist, vol. 20, no.2

Articles

Crowdsourcing with R and the MTurk
API

Thomas J. Leeper
Aarhus University
thosjleeper@gmail.com

Political scientists are in constant need of human-
generated data. Responses to survey questions and reac-
tions to experimental stimuli, manual coding of visual, au-
ditory, and textual data, and the recorded behavior of indi-
viduals engaged in naturalistic or artificial behaviors are the
bread and butter of contemporary quantitative research on
politics. Yet access to large numbers of humans capable of
producing these data is often a major logistic and financial
challenge for researchers doing everything from large coding
projects to pretesting of questionnaires to the recruitment of
participants for full research studies. This search for humans
willing to generate the kinds of data social scientists de-
mand has led to major recent interest in online data collec-
tion generally (e.g., Iyengar 2010; Iyengar and Vavreck 2011;
Vavreck and Iyengar 2011) and, more recently, crowdsourc-
ing platforms in particular (Schmidt 2010; Chen, Menezes,
and Bradley 2011) to provide these kinds of data at low cost.
Among these platforms, Amazon Mechanical Turk (MTurk)
stands out as one of the largest and most useful platforms
for political science research (Berinsky, Huber, and Lenz
2010).

Leveraging MTurk to move traditionally pencil-and-
paper processes managed locally (like laboratory experi-
ments or the hand-coding of materials by undergraduate
research assistants) into a cloud-based process can dramati-
cally lower the time and resource expenditure involved with
such efforts, as well as streamline research workflow. This
article advocates for and describes how to move these social
science data needs into the cloud using an R package called
MTurkR (Leeper 2012), while also encouraging the devel-
opment of packages that connect researchers to potentially
valuable sources of API-based data. Integrating data APIs
into R enables researchers to work with data in a familiar
programming environment, directly link data collection and
data analysis (thereby eliminating the number of steps and
amount of time involved), and aid the reproducibility of re-
search by focusing on using (and making) publicly available
data that can be readily accessed from the cloud using code

that can be shared to produce identical results.1

MTurk: Introduction and Core Concepts

MTurk is a crowdsourcing platform designed to provide “hu-
man intelligence” for tasks that cannot be readily, afford-
ably, or feasibly automated (Amazon.com 2012). The ser-
vice provides researchers with useful infrastructure for the
generation of common social science data. While many early
adopters of MTurk as a data generation tool came from
computer science (Mason and Suri 2011; Kittur, Chi, and
Suh 2008), more recent attention has emerged among social
scientists (Buhrmester, Kwang, and Gosling 2011; Berin-
sky, Huber, and Lenz 2010; Paolacci, Chandler, and Stern
2010). Use of MTurk in general reflects a clear move toward
cloud-based research, yet substantial barriers to entry for
sophisticated use of MTurk exist—namely the limited func-
tionality of the service’s online graphical Requester User
Interface (RUI) for anything other than linking to off-site
survey tools and the difficulty (for most non-engineers) of
using MTurk’s other access points. Frankly, using MTurk
for complicated social science research tasks is quite chal-
lenging and that difficulty limits the ability of researchers to
innovate and test the limits of the platform for generating
useful social science data.

Key Terms and Concepts

The service connects requesters, who are willing to pay work-
ers to perform a given task or set of tasks at a given price
per task. These “Human Intelligence Tasks” (HITs), are the
core element of the MTurk platform. A HIT is a task that a
requester would like one or more workers to perform. Every
HIT is automatically assigned a unique HITId to identify
it in the system. Performance of that HIT by one worker
is called an assignment,2 such that a given worker can only
complete one assignment per HIT but multiple workers can
each complete an assignment for that HIT (up to a maxi-
mum set by the requester). Multiple HITs can be grouped
as a HITType, allowing a worker to complete multiple sim-
ilar HITs (e.g., coding of several different texts) with ease.

MTurk operates on basic market principles of supply and
demand. Workers can choose which HITs to complete and
how many HITs they want to complete at any given time,
depending on their own time, interests, and the payments

1Another approach is the dvn package, which provides access to The Dataverse Network repository API (Leeper 2013) or the ROpenSci project,
which does the same for a large number of (mostly natural science) APIs.

2HITs, Workers, Requesters, and Assignments each have a unique ID, which become essential for using MTurkR.

http://cran.r-project.org/web/packages/dvn/index.html
http://ropensci.org/

The Political Methodologist, vol. 20, no. 2 3

that requesters offer.3 A requester can offer as low as $0.005
per assignment, but if other requesters offer HITs that add
up to a higher hourly wage, workers can choose to take their
labor elsewhere. Similarly, requesters can pay any higher
amount they want per assignment, but that may not be
cost-effective given market forces. MTurk also charges a
surcharge equal to 10% of all worker payments.

Once a worker completes a HIT, the requester can re-
view the assignment, determining whether the responses or
answers provided by the worker are satisfactory. If so, an as-
signment can be approved and the requester pays the worker
the predetermined per-assignment price for the HIT (and
no more or no less; the price is fixed in advance). If the
requester thinks the work merits additional compensation
(or perhaps if workers are rewarded for completing all HITs
of a given HITType), the requester can also pay a bonus
of any amount to the worker at any point in the future. If
work is unsatisfactory, the requester can reject work and
thereby deny payment (but has to justify that rejection to
the worker), freeing the assignment for completion by an-
other worker.

While these are the basic functions of MTurk, additional
functionality is hidden (or at least inconvenient) via the
RUI. In particular, while the RUI provides some ability
to control what types of workers are eligible to complete
a HIT (based upon their HIT approval rate, country of res-
idence, and a few other measures) through qualification re-
quirements, the functionality provided by the RUI makes it
difficult to organize large numbers of workers using these
qualifications as well as create new qualifications. Paying
bonuses to and contacting workers is similarly quite tedious.
The Requester API, by contrast, provides full access to the
underlying web application that runs MTurk and MTurkR
accesses that API through a familiar programming environ-
ment.

MTurkR Package

Before using MTurk or the MTurkR package, one needs to
have an MTurk requester account, which can be created
at http://www.mturk.com, and deposit money in that ac-
count.4 To use MTurkR (or any tool for accessing the Re-
quester API), one additionally needs to retrieve Amazon
Access Keys from https://aws-portal.amazon.com/gp/
aws/securityCredentials. The keypair is a linked “Ac-

cess Key ID” and a “Secret Access Key” that, in combi-
nation, allow MTurkR to access the API. In MTurkR, the
keypair is a two-element character vector with the Access
Key ID as the first element and the Secret Access Key
as the second element. This keypair is used to authenti-
cate API requests, which are HTTP communications sent
from MTurkR running on a local workstation to the MTurk
server.5

MTurkR provides access to every part of the MTurk API
through a set of easy-to-use, but powerful R functions that
provide both simplicity for the beginning requester and ro-
bust functionality for managing everything from a single
survey-type HIT with a few hundred responses to a mas-
sive HITType with large numbers of HITs, assignments,
and workers. The package additionally provides an array of
novel tools for managing workers (i.e., with qualifications,
email notifications, and bonus payments).6

MTurkR automates the request and authentication pro-
cess, such that no knowledge of HTTP requests or authen-
tication is required to use it.7 One need only provide a
keypair and know the particular operation to be performed.
Once performed, the MTurk service verifies that the request
is valid. The API then returns an XML response, which
MTurkR (generally) converts into R data structures that
can be directly used in analysis with no need for manual
conversions to R-readable data.8

As a brief example, the simplest operation is to check
the balance in one’s requester account. To do so (or before
doing any operation with MTurkR), the keypair should be
recorded with a call to credentials(), which takes two
character strings as its parameters: (1) an AWS Access
Key ID, and (2) an AWS Secret Access Key.9 A call to
AccountBalance() then queries the API and returns a sim-
ple character string showing the remaining balance in the
requester account.

Two Political Science Use Cases

By providing direct and complete access to the API,
MTurkR removes rather than imposes (as the RUI does)
limitations on what researchers can crowdsource. To de-
scribe how researchers might utilize MTurk, this section pro-
vides two examples of MTurk as a social science data plat-
form using MTurkR code to demonstrate how to easily man-
age that data collection. In both cases, a data need—first,

3Workers also communicate about the quality of HITs and requesters on fora such as http://turkopticon.differenceengines.com/, http:

//mturkforum.com/, and http://www.turkernation.com/.
4Note: The API does not allow you to add funds to your account, which must therefore be done through the web interface: https:

//requester.mturk.com/mturk/prepurchase.
5To move further into the cloud, one could also run MTurkR remotely through a server-based implementation of R, such as RApache (http://

rapache.net/), RStudio Server (http://www.rstudio.com/ide/docs/server/getting_started), or Amazon’s EC2 (http://aws.amazon.com/ec2/).
6MTurkR also includes a lightweight graphical user interface, which will not be discussed here.
7This functionality is provided by calls to the RCurl package (Lang 2012a).
8The XML parsing is provided by the XML package (Lang 2012b). The raw XML responses are stored, by default, in a tab-separated value log

file in the user’s working directory.
9The function stores this as a two-element character vector, which is then referenced by default by all other MTurkR functions.

http://www.mturk.com
https://aws-portal.amazon.com/gp/aws/securityCredentials
https://aws-portal.amazon.com/gp/aws/securityCredentials
http://turkopticon.differenceengines.com/
http://mturkforum.com/
http://mturkforum.com/
http://www.turkernation.com/
https://requester.mturk.com/mturk/prepurchase
https://requester.mturk.com/mturk/prepurchase
http://rapache.net/
http://rapache.net/
http://www.rstudio.com/ide/docs/server/getting_started
http://aws.amazon.com/ec2/

4 The Political Methodologist, vol. 20, no.2

for human coding of newspaper articles and, second, par-
ticipation in a panel experiment—starts the research work-
flow and that need is broken down into MTurk HITs, which
are completed by workers and reviewed by the requester

via MTurkR, before the completed data are extracted from
MTurk for analysis immediately in R. Figure 1 lays out this
basic process with solid lines representing necessary actions
and dashed lines showing optional actions.

Data need

Deconstruct need
into single tasks

Design HITs
for each task

Register HITType

Qualification
Requirements

Test

Create HIT(s) Assignment

Assignment

Assignment

Assignment

Assignment

Review Contact

Bonus

Qualify

Analyze data

Figure 1: An MTurk Workflow

First Use Case: Content Analysis

One of the most prevalent research techniques in political
science is content analysis, be it coding of newspaper ar-
ticles, images, speeches, campaign advertisements, or web-
sites. While this is often done with an army of undergrad-
uate research assistants or, more recently, via a number of
automated techniques, crowdsourcing of human coding re-
mains underutilized. Following the workflow described in
Figure 1, a coding task consists of a need for a rectangular,
item-by-attribute dataset for all of the items to be coded
(items for our purposes are newspaper articles). Decon-
structing this need into individual tasks, requires the con-
struction of a coding sheet to be used on each item (a HIT
will consist of coding one item), which can be written as an
HTML form (or prepared in WYSIWYG form in the RUI).

To ensure quality, however, it may also be useful to re-
strict who can code the items to those who have demon-
strated that they can accurately perform the task. Thus,
in addition to designing each of the HITs, a qualification
test should also be designed that will simulate the coding
process and allow the requester to evaluate whether or not
a particular worker qualifies to work on the coding.10 Once
the coding sheet and qualification test are written, imple-
menting the coding process via MTurkR simply proceeds

left-to-right across the tasks in Figure 1.
First, a HITType is created with the qualification test

to display all of the coding items together on the MTurk
worker site. Then, each HIT is created by associating it
with the HITType. Workers then complete the qualification
test and, if successful, are eligible to complete assignments.
Once assignments are completed, the requester can review
those assignments (approving acceptable work and rejecting
all else) and then extract the data and analyze. Workers
who pass the qualification test but fail to perform well on
the work can have their qualification revoked, preventing
them from completing more of the assignments. The HIT-
Type has four required and three optional characteristics,
but good practice is to specify all of them:

• Title (required)

• Description (required)

• Reward (required)

• Duration (required)

• Keywords

• Assignment Auto-Approval Delay

• Qualification Requirements
10For technical reasons, this test needs to be written in the proprietary QuestionForm (XML) format, with the advantage being that MTurk can

automatically score workers’ qualification tests.

The Political Methodologist, vol. 20, no. 2 5

To register a HITType, these characteristics need to be de-
fined in a call to RegisterHITType(). But, first, we will
create a Qualification that tests workers’ ability to code,
along with an AnswerKey that MTurk will use to automat-
ically score and qualify workers who complete the test.
AnswerKey is a character string containing an AnswerKey
QuestionForm is a character string containing a QuestionForm
newqual <- CreateQualificationType(name="Coding Test", description=

"Test of coding ability", status="Active",
test.duration=seconds(hours=1),
test=QuestionForm,
answerkey=AnswerKey)

That QualificationRequirement can then be attached to a
new HITType, along with the other parameters:

q1 <- GenerateQualificationRequirement(newqual$QualificationTypeId,
">=", 100, preview=TRUE)

register <- RegisterHITType(title="20-Question Survey",
description="Take a five-question survey about your political
opinions from researchers at Aarhus University,"
,reward=".25", duration=seconds(days=1,hours=8),
keywords="survey, question, answers, research, politics",
qual.req=q1)

Figure 2: Retrieving a HIT LayoutId from the RUI

Creating a HIT using HITLayout parameters is also in-
credibly easy. The coding sheet template can be saved in the
RUI with a placeholder of the style ${message} where the
text of each article will be inserted. Once the HIT template
is created in the RUI, you can retrieve its LayoutId from
https://requester.mturk.com/hit_templates by click-
ing on the “Project Name” on the left-hand side of the
screen. A pop-up window will appear displaying the Lay-
outId and the name of any placeholders (see Figure 2).
Those placeholders can be replaced with the relevant mate-
rial when CreateHIT() is called, by specifying hitlayoutid
and hitlayoutparameters. Assuming the newspaper texts
are loaded into R in a list of character strings called
articles, one can simply iterate through that list to create
each HIT, placing the text of each article in the message
layout parameter:

layout <- "2J8JQ2172Z9990XQXO3VKBU13LWRZO"
hits <- vector(length=length(articles), mode="character")
for(i in 1:length(articles)){

hits[i] <- CreateHIT(hit.type=register$HITTypeId, hitlayoutid=
layout, hitlayoutparameters=
GenerateHITLayoutParameter("message",articles[[i]]),
annotation=paste("Article to code",i),
expiration=seconds(hours=1),
assignments=2)$HITId}

This loop will return the HITId for each new HIT, which
the above code stores in a character vector called hits. The
HITId for each HIT (and the annotation value, which pro-
vides a private description of the HIT visible only to the re-
questers) can be retrieved at any time using SearchHITs().
Once a HIT is created, the simplest (and perhaps modal)
management strategy is to simply let it run its course, with
workers completing some or all of the available assignments
before the HIT expires. But, it is also helpful to be able to
make certain changes to HITs after they have been created

To delay the expiration of HIT (e.g., be-
cause not all assignments have been completed),
ExtendHIT(hit=hits$HITId[1], add.seconds=seconds
(days=1)) extends the specified HIT(s) by the time spec-
ified in seconds(). If intercoder reliability appears to be
low, a call to ExtendHIT(add.assignments=1) increases
the number of available assignments for all specified HITs
by one (or more) to help resolve disagreement.11

ExtendHIT(hit.type=register, add.assignments=1)

To instead expire a HIT early (e.g., because there is an unan-
ticipated problem with the HIT), simply call ExpireHIT()
with one or more HITIds specified. At the completion

11MTurk also provides “review policy” functionality to automatically respond to agreements or disagreements between workers’ coding. See
MTurk documentation.

https://requester.mturk.com/hit_templates

6 The Political Methodologist, vol. 20, no.2

of data collection, the easiest method of reviewing work-
ers’ assignments is simply to retrieve all of the assign-
ments and them approve them. ApproveAllAssignments()
can be specified with either a HITId or a HITTypeId.
Once a HIT and all of its assignment data are no longer
needed, DisposeHIT() can optionally delete all data from
the MTurk server.
a <- hits$HITId[1]
b <- GetAssignments(hit=a, return.all=TRUE)
c <- ApproveAllAssignments(hit=a)

Second Use Case: Panel Experiments

The viability of MTurk as a platform for implementing social
science experiments is well-understood, but the platform’s
comparative advantage for implementing complicated panel
data collection is underappreciated, in part for technolog-
ical reasons. The ability to recontact and pay large num-
bers of workers falls outside the functionality of the RUI.
In this use case, the objective is to implement a three-
wave panel experiment, where respondents are randomly
assigned to a condition at t1, recontacted to participate in
a follow-up wave with additional block-randomization at t2,
and finally a second follow-up wave at t3. In contrast with
the first use case, the first stages of the workflow here are
relatively easy. First, an experimental survey instrument
is constructed with any tool (e.g., Qualtrics or one’s own
HTML). Second, a single HIT is created (without a quali-
fication test) to which workers respond by completing the
survey-experiment. Note that when only one HIT is needed,
the parameters normally assigned with RegisterHITType()
can be specified in the CreateHIT() command.
newhit <- CreateHIT(question=GenerateExternalQuestion

("http://www.test.com/surveylink", 400)$string,
title="20-Question Survey",
description="Take a five-question survey about

your political opinions.",
reward=".25", duration=seconds(hours=4),
expiration=seconds(days=7),
assignments=1000,
keywords="survey, question, answers, research,

politics, opinion",
auto.approval.delay=seconds(days=15),
qual.req=GenerateQualificationRequirement

("Location","==","US",preview=TRUE))

Once a sufficient number of responses are collected
(i.e., assignments completed)—this can be checked with
HITStatus(hit=newhit$HITId), assignments can be re-
viewed such that only those who pass an attention check
are approved and the remainder rejected:
review <- GetAssignments(hit=newhit$HITId)
correctcheck <- "7"
approve <- approve(assignments=review$AssignmentId[review$check

==correct])
reject <- reject(assignments=review$AssignmentId[!review$check

==correct])

After reviewing these assignments, MTurkR is leveraged
via the three tasks at the right side of Figure 1: Bonus,
Contact, and Qualify. To implement a panel, workers who
completed the original HIT (the t1 survey) are randomized
to receive either a Democratic or Republican message in
the t2 survey, with separate links for each condition. These
workers are then contacted to complete the t2 survey and
are paid a bonus if they complete it.
random <- rbinom(dim(approve)[1], 1, .5)
b1 <- "If you complete a follow-up survey, you will receive a $.50

bonus.\n
You can complete the survey at the following link:
http://www.test.com/link1?WorkerId="

w1 <- approve$WorkerId[random==1]
t2cond1 <- ContactWorkers(subjects="Complete follow-up survey for

$.50 bonus",msgs=sapply(c1,FUN=function(worker)
paste(b1,worker)), workers=w1)

b2 <- "If you complete a follow-up survey, you will receive a $.50
bonus.\n

You can complete the survey at the following link:
http://www.test.com/link2?WorkerId="

w2 <- approve$WorkerId[random==2]
t2cond2 <- ContactWorkers(subjects="Complete follow-up survey for

$.50 bonus",
msgs=sapply(c2,FUN=function(worker) paste(b2,worker)),
workers=w2)

The process could be repeated for the t3 survey. Pay-
ing bonuses for completing the t2 and t3 surveys is similar.
The below example shows paying a single bonus, but re-
placing the single character strings with vectors of character
strings allows multiple bonuses to be paid with one called
to GrantBonus().
bonus <- GrantBonus(workers="AZ3456EXAMPLE",

assignments="123RVWYBAZW00EXAMPLE456RVWYBAZW00EXAMPLE",
amounts="1.00", reasons="Thanks for completing the

follow-up survey!")

Workers can optionally be granted qualifications, e.g., to
allow those who respond to all panel waves to complete a
future study or, alternatively, to prevent participants in this
study from completing a similar study launched in the near
future bringing the process back to the left side of Figure 1.
With all data collected, analysis can proceed.12

APIs, Cloud Data, and Political Science

As these two use cases have demonstrated, crowdsourcing
(via MTurk) is a powerful addition to the political scientist’s
toolkit. By managing cloud-based data collection directly in
R, this process is also relatively easy, done in a comfortable
programming environment, and scientifically reproducible.
But using MTurkR to connect with the MTurk API also
shows that R can be an effective and easy-to-use way to work
with cloud-based data. Currently, R has few packages that
provide easy access to data APIs. One, twitteR provides ac-
cess to Twitter data. Alone it may not be immediately use-
ful, but when used in combination with the U.S. federal gov-
ernment’s Social Media Registry API, it should be relatively
easy to track the Twitter activity of numerous government

12If all three panel waves were created as HITs, qualifications would restrict the t2 and t3 surveys to workers who had completed t1 and the data
could also be directly extracted from MTurk via MTurkR rather than having to be pooled from another survey tool.

http://cran.r-project.org/web/packages/twitteR/
http://www.usa.gov/About/developer-resources/social-media-registry.shtml

The Political Methodologist, vol. 20, no. 2 7

agencies. A second R package, RWeather provides access to
current weather from NOAA weather stations; a more useful
package would tap the wunderground.com API, which is ca-
pable of providing robust, geocoded weather data going back
decades. An enormous amount of data is also available from
other APIs, such as those from Bitly to track social sharing
of links and YouTube Analytics API to track liking, shar-
ing, and commenting on YouTube videos, The World Bank,
U.S. Census Bureau, the Federal Register, OpenCongress
and GovTrack, several Washington Post APIs that track
political contributions and White House visitors, and even-
tually the new Congress.gov, which aims to be a central
repository for Congressional data available via APIs. Devel-
oping software that enables researchers to readily tap into
these immense sources of data is an important task for po-
litical methodologists, who can develop tools that enable
non-programmers to easily access these data.

References

Amazon.com. 2012. “Amazon Mechanical Turk Getting
Started Guide”.

Berinsky, Adam J., Gregory A. Huber, and Gabriel S. Lenz.
2010. “Using Mechanical Turk as a Subject Recruitment
Tool for Experimental Research.” Unpublished paper,
Massachusetts Institution of Technology.

Buhrmester, Michael, Tracy Kwang, and Samuel D. Gosling.
2011. “Amazons Mechanical Turk: A New Source of
Inexpensive, Yet High-Quality, Data?” Perspectives on
Psychological Science 6(1): 3–5.

Chen, Jenny J., Natala J. Menezes, and Adam D. Bradley.
2011. “Opportunities for Crowdsourcing Research on
Amazon Mechanical Turk.” Unpublished paper, Ama-
zon.com.

Iyengar, Shanto. 2010. “Experimental Designs for Politi-
cal Communication Research: From Shopping Malls to

the Internet.” In Sourcebook for Political Communica-
tion Research: Methods, Measures, and Analytical Tech-
niques, eds. Erik Page Bucy, and R. Lance Holbert. New
York: Routledge.

Iyengar, Shanto, and Lynn Vavreck. 2011. “Online Panels
and the Future of Political Communication Research.”
In Handbook of Political Communication Research, eds.
Holli A. Semetko, and Margaret Scammell. New York:
Sage Publications, 225–240.

Kittur, Aniket, Ed H. Chi, and Bongwon Suh. 2008.
“Crowdsourcing User Studies with Mechanical Turk.”
Paper presented at the CHI 2008, New York, New York,
USA.

Lang, Dustin Temple. 2012a. “RCurl: General network
(HTTP/FTP/...) client interface for R.” R package ver-
sion 1.91–1.1.

Lang, Dustin Temple. 2012b. “XML: Tools for parsing and
generating XML within R and S-Plus.” R package ver-
sion 3.9–4.1.

Leeper, Thomas J. 2012. “MTurkR: Access to Amazon Me-
chanical Turk Requester API.” R package version 0.1.

Mason, Winter, and Siddharth Suri. 2011. “Conducting Be-
havioral Research on Amazons Mechanical Turk.” Un-
published paper, Yahoo! Research. http://www.ncbi.
nlm.nih.gov/pubmed/21717266

Paolacci, Gabriele, Jesse Chandler, and Leonard N. Stern.
2010. “Running Experiments on Amazon Mechanical
Turk.” Judgment and Decision Making 5(5): 411–419.

Schmidt, Lauren A. 2010. “Crowdsourcing for Human Sub-
jects Research.” Paper presented at the CrowdConf
2010, San Francisco, CA.

Vavreck, Lynn, and Shanto Iyengar. 2011. “The Future
of Political Communication Research: Online Panels
and Experimentation.” In Oxford Handbook of Public
Opinion and Media Research, eds. Robert Y. Shapiro,
and Lawrence R. Jacobs. New York: Oxford University
Press.

GitHub: A tool for social data set de-
velopment and verification in the cloud

Christopher Gandrud
Yonsei University
christopher.gandrud@gmail.com

A new data set is created. Analyses are run. An arti-
cle is published. The data set languishes. The data set’s
creators move on to other projects. Maybe someone else ac-
cesses the data and updates it for their own work. However,

these updates are never connected back to the original and
the updates are not widely known about. So, multiple peo-
ple end up wasting time making the same updates. Maybe
another researcher finds a mistake in the original data set.
They email the authors suggesting corrections. The original
authors may or may not make the changes. If changes are
made, there are no easily accessible records of them. Some
researchers may even be reluctant to make their data avail-
able at all (partially) out of fear that someone may find a
mistake and they will have to spend time making tedious
corrections.

http://cran.r-project.org/web/packages/RWeather/RWeather.pdf
http://www.wunderground.com
http://dev.bitly.com/
https://developers.google.com/youtube/analytics/
http://data.worldbank.org/developers
http://www.census.gov/developers/
https://www.federalregister.gov/blog/learn/developers
http://www.opencongress.org/about/code
http://www.govtrack.us/developers
http://developer.washingtonpost.com/applications
file:Congress.gov
http://www.ncbi.nlm.nih.gov/pubmed/21717266
http://www.ncbi.nlm.nih.gov/pubmed/21717266

8 The Political Methodologist, vol. 20, no.2

These are all examples of ways that the development and
management of social science data sets do not take advan-
tage of knowledge distributed in the social science commu-
nity. These problems are partially caused by the data stor-
age tools social scientist use. Despite rapid recent advances
in social technologies—Twitter, Facebook, and so on—the
tools many social scientists use do not make it easy, nor do
they provide incentives to collaboratively develop data sets
and verify their accuracy, especially for people not involved
in creating the original data set.

In this brief article I show that GitHub1 offers a com-
prehensive data storage service for social scientists creating
and using original data sets. It has unique tools for social
data set development and accuracy verification. Further-
more, GitHub fits directly into an active research workflow,
particularly one that also includes R.2

GitHub was originally created and is widely used as a
tool for software developers to work together on projects,
especially open source projects, using the Git3 version con-
trol system. It has been called the “Facebook of program-
mers” (Xie, 2011). Though GitHub is already often used
by social scientists for statistical package development4 it
initially seems strange for me to suggest that this service
would be useful for social scientists building and maintain-
ing data sets. However, a software program and many social
science data sets are fundamentally similar. They are col-
lections of text files. GitHub is a means of storing, version
controlling, and collaborating on text files. So if a social sci-
entist’s original data is (a) in a plain text format, such as
comma-separated values (CSV),5 and (b) has accompany-
ing variable description files also in a plain text format—e.g.
TXT plain text or Markdown (MD),6 they can take full ad-
vantage of GitHub’s features for social data set development
and verification.7

In this article I begin by discussing the features that
we want from a cloud service to store social science data:
stable storage, version control, access, and collaboration.
Then I examine how strong these features are in three meth-
ods widely used to store social science data. Though each
method has its strengths, none of them encourage social
data set development and verification.

A few brief notes before beginning: To get started with
Git and GitHub see the GitHub Set Up page: https:
//help.github.com/articles/set-up-git. In this arti-

cle I give examples of how to take advantage of GitHub
using their website and from the command line. However,
there are also very good graphical user interface (GUI) ver-
sions of GitHub for Mac and Windows (see GitHub’s Set
Up page for more information). I focus on GitHub, but you
can also use other services that work with Git such as Bit-
bucket8 for some of the same things. Nonetheless, I discuss
GitHub because it has a much more comprehensive set of
features and is more widely used. Finally, the tools I discuss
in this article are suitable for the small to medium size data
sets common in social science. Much larger data sets often
cannot be efficiently stored in plain text files. GitHub is not
a suitable storage service for very large data sets.

What do we need from a cloud data storage
service?

A cloud storage service for actively developed and used so-
cial science data needs to enable at least four things: stable
storage, version control, access, and collaboration.9 Obvi-
ously a cloud storage service needs to be a stable and reliable
platform for data storage. The service needs to include ver-
sion control—similar to track changes in a word processing
program—so that the development of the data set can be
understood and researchers are able to revert to old versions
(see Bowers (2011), Healy (2011) and Fredrickson, Testa and
Weidmann (2011)). Data stored on it needs to be accessi-
ble both to coauthors and to others who wish to reproduce
analyses (Fomel and Claerbout, 2009), verify the data sets’
accuracy, or use the data sets in new projects (Kelly, 2006;
King, 1995). Another key part of access is that the storage
service makes it easy to both develop and use data sets as
part of researchers’ workflows. Finally, a cloud data storage
service should make collaboration easy. As long as there are
no confidentiality or other strong reasons to limit access to
a data set, collaboration should not be limited to coauthors.
It should be possible to also collaborate with non-coauthors
so that the data set can be improved by taking advantage
of knowledge (and motivation) distributed throughout the
social science community. Ideally, social data set develop-
ment and verification keeps data sets more up-to-date and
more accurate.

1https://github.com/
2GitHub can be used to store and develop entire social science research projects, not just data. However, I do not directly address these other

topics here.
3http://git-scm.com/
4For example, the Zelig R package (Imai, King and Lau, 2008; Owen et al., 2012) is hosted on GitHub. See https://github.com/IQSS/Zelig.
5All major statistical programs as well as Microsoft Excel and Apple’s Numbers can save and open files in plain text formats like CSV.
6http://daringfireball.net/projects/markdown/
7See Bowers (2011, 3) for a discussion of the advantages of storing research files in plain text format.
8https://bitbucket.org/
9King (2007) discussed eight “requirements for effective data sharing.” His focus was on replication data sets for published results, rather than

actively developing original data sets. His requirements, nonetheless largely overlap with mine here with the exception of “authorization” and
“legal protection.” I discuss these below.

https://help.github.com/articles/set-up-git
https://help.github.com/articles/set-up-git
https://github.com/
http://git-scm.com/
https://github.com/IQSS/Zelig
http://daringfireball.net/projects/markdown/
https://bitbucket.org/

The Political Methodologist, vol. 20, no. 2 9

Data storage: the social science status quo

Social science data is currently often stored in three ways.
It may be stored locally on a researcher’s computer, on a
general purpose cloud storage service such as Dropbox10 or
Google Cloud Drive,11 or on a specialized research hosting
service, notably Dataverse.12 Each of these data storage
methods has strengths in terms of stable storage, access,
version control, and collaboration. Nonetheless each are
lacking in at least one important way, and none of them
promote social data set development and verification.

Local storage. Local storage—data sets saved on indi-
vidual researchers’ computers—is the least robust form of
data storage currently used. It is not a very stable form of
storage. Version control with Git or some other program is
possible with locally stored data. However, if the version
control files are lost along with the data, the data are lost.
Researchers with access to the computer can easily access
the data, but access by coauthors is limited. Access by non-
coauthors is very cumbersome. Files must be emailed or
conveyed by hand (on some portable storage medium) in
response to individual requests. These files are not auto-
matically updated with new versions of the data. Because
access is limited to users of the computer the data is stored
on, collaboration, especially by non-coauthors is extremely
limited.

General purpose cloud storage. Dropbox and other
general purpose cloud storage services offer much more ro-
bust storage. These services generally work by syncing files
stored on individual computers with those on cloud servers.
Dropbox has a basic version control system. If you are using
Dropbox for free, every time you save a file that version is
stored and accessible for 30 days.13 In addition you could
use Git with a data set stored on Dropbox. Access is usually
very easy. These services can be accessed via desktop pro-
grams, mobile apps, and websites. Because files stored on
individual computers are automatically synced with cloud
servers, it is very easy to incorporate them into a workflow.
General purpose cloud storage services also make it possi-
ble to share files and folders via URL links. Collaboration
with coauthors is very easy because folders can be shared.
This means that official collaborators (those given permis-
sion to make changes to the folder, i.e. write access) can
easily change files in the folder and these changes are au-
tomatically synced for all users.14 However non-coauthors,
without write access to the shared folder cannot easily sug-

gest specific changes. They must email their suggestions to
one of the researchers with write access. This is not much
better than a situation with locally stored files.

Dataverse. Many journals—Political Analysis for
example—require data used in articles they publish to be
uploaded to a specialized research data storage service like
Dataverse. Dataverse is a stable form of storage. It does
have some version control features. It saves each version
that is uploaded to it. Old versions are downloadable.
Dataverse is easily accessible for anyone with an internet
connection. But it is difficult to access data as part of a
research workflow, at least using the standard version.15

Unlike Dropbox, for example, there is no way to automat-
ically update a data set on Dataverse. You have to point
and click to upload data files for each version. It is difficult
to access data directly from a statistical program such as
Stata or R. The data needs to be downloaded by pointing
and clicking and then loaded into these programs. Finally,
it is difficult to collaborate using Dataverse. Changes to
a data set must be uploaded to the site manually, then
manually downloaded by collaborators. There are also no
direct ways for non-coauthors to suggest changes.

Dataverse is very good for what it is designed to do:
store a snapshot of a data set for replicating specific pub-
lished results (King, 2007). It is uniquely strong among all
of the storage options discussed here for providing journals
with branded replication data set archives and has built in
mechanisms for ensuring that a journal is legally protected
and that data users have proper authorization (King, 2007,
177–179). However, it is difficult to use Dataverse to store
and access data as part of an ongoing research workflow. In
addition it does not easily enable or incentivize social data
set development and verification of its accuracy.

Data Storage on GitHub

Though admittedly requiring a steeper learning curve,
GitHub meets the four criteria for data set storage very well.
In this section I will demonstrate how to use GitHub for
data set storage, version control, access, and collaboration.
Rather than giving a complete introduction, I focus on spe-
cific important aspects of each feature in Git and GitHub.
In this section I give examples from a data set stored on
GitHub. It is a data set of countries’ Gallagher Electoral
Disproportionality index across time that I put together
from data used in Gallagher (1991, updated through 2011)
and Carey and Hix (2011). The data set and more informa-

10https://www.dropbox.com/
11https://drive.google.com/
12http://thedata.org/
13Old versions are stored for longer with paid accounts.
14This can create problems if multiple authors are making changes to the same files at the same time. For a discussion of file conflicts see

Fredrickson, Testa and Weidmann (2011).
15It is possible to build a custom version of Dataverse with some R integration.

https://www.dropbox.com/
https://drive.google.com/
http://thedata.org/

10 The Political Methodologist, vol. 20, no.2

tion about it is available at: http://christophergandrud.
github.com/Disproportionality_Data/.

Storing and version control

Version control is an integral part of how GitHub stores
files. GitHub remotely stores files in what Git calls “reposi-
tories”, repos for short. You can think of repos as the folder
containing a data set, including the data, description files,
citation, copyright, and other legal information, as well as
any source code used to create the data set. Repos could
also include PDFs of papers where the data set was used
and code for replicating the analyses in these papers. Git
version controls files in repositories and GitHub hosts them
remotely in the cloud.16

With a GitHub account you can store repositories for
free on GitHub if they are in what GitHub calls “public
repositories.” Anyone can see the contents of public repos-
itories, including all previous versions.17 Users can have an
unlimited number of public repositories. There is a soft stor-
age size limit of one gigabyte per repository. This should be
more than enough for most social science data sets if they
are stored in plain text formats. Each repository is given a
webpage. Here is a portion of the Electoral Disproportion-
ality repository’s main page:

Git is a very powerful version control system, especially
for text files. For these types of files, Git only saves the
actual changes when you (1) add a file to the repository and
then (2) commit a version of the file to the repository. This
is different from the other cloud storage services we have
discussed. They save the whole file for each version. With
Git, each “commit” in a repo is given a unique SHA-1 num-
ber identifying it. The author of the commit is also saved.

Once you commit changes on your computer you can (3)
push them to the remote GitHub version of the repo. A
repo’s GitHub website allows you to view all of the changes
that have been made to it. You can browse all versions of
the text files, view highlighted changes, and comment on
these changes. For example:

To see changes made to a file click on the History button
located on the file’s GitHub webpage.

This will show the file’s entire commit history. Click an in-
dividual commit’s description to see and comment on the
changes.

Contributor analytics. Because Git only commits
changes and uniquely identifies the changer, it is possible
to properly attribute every individuals’ contribution to a
data set. On the GitHub website you can see every change
that has been made to each line of a file and who made the
change. Git calls this “blame.” To view who last changed
each line of a file click on the Blame button on its GitHub
page.

GitHub has graphical capabilities for organizing and dis-
playing this data. One way to use these is by clicking on
the Graphs button located near the top of each repository’s
webpage. This will give you access to graphs such as the
ones below (I’ve blurred the contributors’ names):

16Specifically, GitHub files are stored on Rackspace (http://www.rackspace.com/).
17Private repositories are available allowing only official contributors to see their contents. Private repos require a paid account.

http://christophergandrud.github.com/Disproportionality_Data/
http://christophergandrud.github.com/Disproportionality_Data/
http://www.rackspace.com/

The Political Methodologist, vol. 20, no. 2 11

Binary files. I mentioned that Git treats non-plain text—
binary—files differently. Stata’s DTA data format and
PDFs are examples of binary file types. Rather than com-
mitting specific changes, a new version of the entire binary
file is stored with each commit if they are changed. Binary
files that are very very large can take up a lot of storage
space when version controlled with Git.18 This is also a
problem for all of the other data storage methods with ver-
sion control discussed here. For very large binary files you
will need to use a totally different type of cloud storage
system like Rackspace or Amazon’s S3.19

If you absolutely must have very large binary files in a
repository one solution to the space constraints problem is
to have Git ignore them. You do this by including a text file
called .gitignore in the repository. In .gitignore simply type
the binary file’s name. Git will not version control it. This
unfortunately also means that the file will not be pushed to
GitHub.

Describe the data set with README files. Each
folder in a GitHub repository can contain a file called
README.20 README files for data sets can contain in-
formation about sources, variable descriptions, statements
testifying that the collection and distribution of the data
set violated no law, citation and copyright information,
and so on. GitHub automatically displays the README
file on the repository’s website in full. If it is written
in the Git Flavored Markdown21 mark-up language and
called README.md, it will also be automatically format-
ted. You can see part of the Disproportionality data set’s
README.md above in figure 1.

Tagging versions. Git can tag specific commits. Tags
function as bookmarks for major versions of a Git reposi-
tory. They are particularly useful for demarcating the ver-
sion of a data set used in a particular publication, for ex-

ample. Creating tags is simple. Imagine we want to tag the
second major version of a data set, the one we used for a
publication:

git tag -a v2 -m ’Citation Information’

The option -a means add, v2 is the version number, and
-m adds a message, in this case the publication’s citation
information. Now we simply push the tags to GitHub:

git push --tags

On GitHub there will be a list including the tag and an op-
tion to view and download this specific version of the data.
For example:

Accessing data

There are many ways to access data stored on GitHub and
incorporate it into your workflow. The simplest way is to
use the GitHub website to actually edit files and commit
changes. This can be handy for small changes, especially
from mobile devices. As I mentioned, changes can also be
committed on your computer and pushed to GitHub. You
can use the command line version of Git or the GUI version
of GitHub to push changes. RStudio,22 a program that inte-
grates R and mark-up languages like LATEXand Markdown,
also includes Git and the ability to push a repo to GitHub.
So it is possible to make changes to a repository, commit
them, and push them to GitHub all within the same pro-
gram. Here is a screenshot of this paper being written in
RStudio. The Git functions are in the upper right pane.

18Though it is important to note that previous commits are compressed, so the amount of storage space a committed binary file take up is less
than the size of the original.

19http://aws.amazon.com/s3/
20Actually each folder in a repository can contain one as well.
21http://github.github.com/github-flavored-markdown/
22http://www.rstudio.com/

http://aws.amazon.com/s3/
http://github.github.com/github-flavored-markdown/
http://www.rstudio.com/

12 The Political Methodologist, vol. 20, no.2

Cloning a repo. Repositories can be downloaded in full.
This is called cloning. You can do this by clicking the
Clone in . . . button on a GitHub repository’s web-
site. Cloning can also be done in the command line using
a repository’s address. For example, the Disproportion-
ality data’s clone-able address is: https://github.com/
christophergandrud/Disproportionality_Data.git.
git clone https://github.com/christophergandrud/

Disproportionality_Data.git

Note that in real life the address needs to be on the same line
as the Git clone command. Also, before cloning a reposi-
tory remember to change the working directory to the folder
where you want to save it. In the Unix command line use
the cd command to do this.

Once you have cloned the repository you can role back
to any previous version with the checkout command. For
example if you want to roll back to a tag called “v2”, type:
git checkout v2

If you have permission to make changes to the repository
(see below) you can then push any changes you make back
to GitHub.

Access data directly from R. Loading data stored on
GitHub into R for use in statistical analysis is very easy.23

I created a function that loads plain text formatted data
from GitHub into an R data frame ready for analysis.24 It’s
called source_GitHubData and is stored in a GitHub Gist25

at: https://gist.github.com/4466237. It can be loaded
into R using the source_gist command from the devtools
package (Wickham and Chang, 2012).

Load source_GitHubData

The functions’ gist ID is 4466237
devtools::source_gist (‘‘4466237’’)

The main argument in source_GitHubData is url. You set
this as the URL for the raw version of plain text data file
you want to download. The raw version is the version with
only the text file. You find this URL by clicking the Raw
button on the file’s GitHub page. It’s next to the Blame
button we saw earlier. If you use the URL for the most re-
cent commit of the file, you will always download the most
recent version whenever you use source_GitHubData. The
raw URLs for each commit and tagged versions of the data
are also accessible if you want to use a particular version.

The URL for the raw version of the Electoral Dispro-
portionality data is http://bit.ly/Ss6zDO.26 To down-
load the data and put it in a data frame object called Data
using source_GitHubData type:
Download data
Data <- source_GitHubData(url=‘‘http://bit.ly/Ss6zDO’’)

Note that by default source_GitHubData loads CSV data.
You can add the argument sep = "\t" for tab-separated
(TSV) data files. You can also specify header = TRUE (de-
fault) or header = FALSE.

Citing GitHub data. When a researcher uses data they
accessed via GitHub how can they cite it? A common prac-
tice for citing data is to cite the publication the data set was
originally used in. However, this is incomplete in at least
two ways. First, the version of the data used in the orig-
inal publication may be different from that used later on.
Second, it would be difficult to use this citation to acknowl-
edge contributions made by contributors who did not work
on the original data set, but contributed to later versions.
One solution is to use the standard set by Altman and King
(2007) (see also King, 2007, 183–184).27 They propose that
data set citations have:

• the author’s name,

• the date,

• the data set’s title,

• a unique global identifier (UGI),

• a universal numeric fingerprint (UNF),

• a bridge service.

The first three are self explanatory and shared with stan-
dard citations for other types of materials. Examples of UGI

23You can of course also load data stored on the version of the repo located on your computer.
24The function is based on devtools’ source url command.
25Gists host code snippet. See: https://gist.github.com/.
26I used bitly (http://bitly.com/) to shorten the URL so that it would fit on the page more easily. The full URL is: https://raw.github.com/

christophergandrud/Disproportionality_Data/master/Disproportionality.csv.
27Dataverse uses a version of this standard.

https://github.com/christophergandrud/Disproportionality_Data.git
https://github.com/christophergandrud/Disproportionality_Data.git
https://gist.github.com/4466237
http://bit.ly/Ss6zDO
https://gist.github.com/
http://bitly.com/
https://raw.github.com/christophergandrud/Disproportionality_Data/master/Disproportionality.csv
https://raw.github.com/christophergandrud/Disproportionality_Data/master/Disproportionality.csv

The Political Methodologist, vol. 20, no. 2 13

include Document Object Identifiers (DOI)28 and the Han-
del System.29 They uniquely identify the data set. UNF’s
uniquely number a particular version of the data set. A
bridge service allows you to use the DOI and UNF to link
to the actual data set. Most UGI include a bridge service
and create UNFs. One place to register DOIs for free (with
restrictions) is the German National Library for Science and
Technology.30

You can use Altman and King’s citation standards to cite
specific versions—tags and commits—of a data set stored
with Git on GitHub. Citation information can be displayed
on the version’s README.md file. This allows you to per-
sistently cite the exact version of the data set you used
to achieve a particular result. Because Git stores informa-
tion about each contribution it is possible with this citation
method to identify every person who has contributed to a
particular version of a data set and exactly what their con-
tribution was.

Copyright and open data. If you are creating an orig-
inal data set that you want to and can make open—e.g.
there are no confidentiality issues—while retaining author-
ship and enabling collaboration, it is worth considering how
you want to copyright the data set.31 Any copyright infor-
mation can be placed in a repository’s main README.md
file or in a seperate LICENSE.md file. This is a common
practice for open source software stored on GitHub. For
discussions of why and how to copyright data see Stodden
(2009) and Creative Commons (2012).

Showcase a data set with GitHub Pages. Each pub-
lic repository’s GitHub website allows anyone full access to
the data. However, these pages may be confusing for those
without experience using a version control system. To solve
this problem GitHub Pages32 allows you to very easily cre-
ate a simpler display webpage for the repository. These
pages can be used to describe the data and include links to
download the entire repository. You can of course also add
links to specific files.

To create a page navigate to the repository’s normal
GitHub webpage. Then click Settings→ Automatic Page
Generator. By default it will load the README file as the
content of the new page. You can change this, add a Google
Analytics tracking ID33 to gather information on who visits
the page, and choose an aesthetic style before publishing it.
Here is a sample of the Disproportionality data’s page:

Collaboration

Compared to the status quo social science data storage
methods, GitHub is uniquely strong for enabling and in-
centivizing collaboration both between coauthors and non-
coauthors who may be able to help develop and verify the
data set.

Coauthors. Public repositories can have an unlimited
number of what GitHub calls “collaborators.”34 Collabo-
rators have permission to push changes to the repository.
There is one important practical issue to note. If multiple
collaborators are actively working on a data set, they need to
add an extra step to their GitHub commit process.35 Each
person needs to pull their collaborator’s changes and re-
solve any merge conflicts before pushing committed changes
to GitHub. Here is an example:
Add new files to Git
git add .

Commit the changes
git commit -a -m "A message"

Pull collaborator’s commits
git pull

Push changes to GitHub
git push origin master

28http://www.doi.org/
29http://www.handle.net/
30http://datacite.org/TIB
31Note that raw facts in a data set cannot be copyrighted, though the present layout and procedures used to gather the data can (Stodden, 2009,

39).
32http://pages.github.com/
33http://www.google.com/analytics/
34To add collaborators to a repository go to its webpage and click Settings → Collaborators and add the coauthors’ GitHub usernames.
35This is also true if you make changes to both the GitHub version of the repository and the copy on your computer.

http://www.handle.net/
http://datacite.org/TIB
http://pages.github.com/
http://www.google.com/analytics/

14 The Political Methodologist, vol. 20, no.2

Collaborating with non-Coauthors: Pull requests.
People who want to make changes to a repository, but are
not collaborators can make “pull requests.” All they need
are GitHub accounts. Pull requests are specific changes that
non-collaborators suggest. Requesters can add comments
about why they are suggesting a change. GitHub also has a
discussion forum where anyone can discuss these comments.

After a pull request has been made it is up to the repos-
itory’s collaborators to decide whether or not to accept the
requested changes. If a collaborator accepts the changes,
they are made instantly and a full record of who made the
changes is kept.

There are two ways to make a pull request. If
someone notices a small error—e.g. a misspelling, a
misclassification—or other improvement that they think
should be made to a data set, they can make a pull re-
quest by navigating to the GitHub page for the specific file
they think needs to be changed. Then they click the Edit
button located next to the Raw button (see above). Clicking
this button “forks” the repository, i.e. gives them a copy
they can change. A record of the fork is created on GitHub.
Requesters will then see window like this:

In this window they can make their proposed changes and
add a comment about what the changes are and why they
should be made before clicking Propose File Change.

For longer file changes, e.g. a major addition to the data
set to bring it up-to-date, it is better to work with the forked
repository rather than in the Edit window. To directly fork
a data set’s repository click the Fork button on the upper
right corner of its webpage. You can then make changes
to the forked repository as if it were your own. When you

are ready to suggest the changes be included, you click the
Pull Request button at the top center of the forked repos-
itory’s GitHub page. For more information on forking and
pull requests see the GitHub article on the topic: https:
//help.github.com/articles/using-pull-requests.

Issues. GitHub repositories also have an “Issues” area
that allows any other GitHub user to make a comment on
the repo. These tend to be general suggestions for how to
improve the files or questions about the repo that may be
of general interest. Anyone can respond in the Issues area
creating a discussion thread.

Repo Wiki. GitHub provides a very easy tool for creating
nicely formatted repository wikis. For example, a data set
repo’s wiki could include short articles with details about
how the data set was created and what it has been used for.
Non-official collaborators can add to repo wikis. Like pull
requests, these changes are subject to approval by one of
the repository’s collaborators.

Follow a repository. If you are a GitHub member you
can follow a public repository, even if you aren’t a collabo-
rator, This gives you a Facebook-style newsfeed36 showing
any updates made to the repository as well as discussions
in the Issues area and pull requests.

Passing on the data set. Because of changing time com-
mitments, professional interests, and so on, no one can
maintain and update a data set forever. GitHub makes it
easy to pass on control of a data set while maintaining it’s
entire version history. Simply add the new data set main-
tainer as a collaborator. They will largely have the same
privileges to manage the repository as you did. To com-
pletely transfer control the repositories’ owner can go to
the repo’s GitHub page, click Settings → Transfer. The
transferred repository will contain the entire commit history
of the original repository.

Selective incentives. Why would people actively con-
tribute to improving publicly available data sets, especially
data sets primarily associated with other authors? What’s
in it for them?

GitHub not only provides technology—particularly pull
requests—for social data development and verification, but
it also gives Olsonian selective incentives that can motivate
people to do so (Olson,1965). By keeping track of who made
what change and providing numerous ways to quantify and
visualize each member’s contributions it provides strong se-
lective incentives to collaborate. Perhaps one day social sci-
entists could bring GitHub’s descriptive statistics of their

36See: https://www.facebook.com/help/327131014036297/.

https://help.github.com/articles/using-pull-requests
https://help.github.com/articles/using-pull-requests
https://www.facebook.com/help/327131014036297/

The Political Methodologist, vol. 20, no. 2 15

contributions, like the one below, to hiring and promotion
committees.

Image from Palmer 2013

Conclusion

In this article I have tried to show that GitHub is a very
good option for storing actively developed original social sci-
ence data in the cloud. Journals wishing to host complete
replication data sets for findings that they publish in a way
that easily secures authorization and legal protection may
want to continue to require data snapshots be deposited in
a Dataverse-type archive.37

However, I hope to have demonstrated that GitHub is
worth learning and using for developing and maintaining
original social science data. It is at least as good as the al-
ternatives in terms of stable storage, access, version control,
and collaboration. In addition it is far better at enabling
social data development and verification. GitHub has al-
ready enabled significant contributions to open source soft-
ware development. We can easily use this service to both
make social science data set collaboration easier and provide
selective incentives to do so. Hopefully, this will improve
the social science community’s utilization of its collective
knowledge to create more complete and robust data sets.
Better data sets will allow us to better answer our research
questions.

References

Altman, Micah and Gary King. 2007. “A Proposed Stan-
dard for the Scholarly Citation of Quantitative Data.”
D-Lib Magazine 13(3–4).

Bowers, Jake. 2011. “Six Steps to a Better Relationship
with Your Future Self.” The Political Methodologist
18(2):2–8.

Carey, John M. and Simon Hix. 2011. “The Electoral Sweet
Spot: Low Magnitude Proportional Electoral Systems.”
American Journal of Political Science 55:383–397.

Creative Commons. 2012. “Data.” http://wiki.
creativecommons.org/Data.

Fomel, Sergey and Jon F Claerbout. 2009. “Repro-
ducible Reserarch.” Computing in Science & Engineer-
ing 11(1):5–7.

Fredrickson, Mark M., Paul F. Testa and Nils B. Weidmann.
2011. “Collaboration for Social Scientists, or Software is
the Easy Part.” The Political Methodologist 18(2):19–
23.

Gallagher, Michael. 1991. “Proprtionality, Disproportional-
ity, and Electoral Systems.” Electoral Studies 10(1):33–
41.

Healy, Kieran. 2011. “Choosing your work flow applica-
tions.” The Political Methodologist 18(2):9–18.

Imai, Kosuke, Gary King and Olivia Lau. 2008. “Toward
A Common Framework for Statistical Analysis and De-
velopment.” Journal of Computational and Graphical
Statistics 17(4):892–913.

Kelly, Clint D. 2006. “Replicating Empirical Research in
Behavioral Ecology: How and Why it Should be Done
But Rarely Ever Is.” The Quarterly Review of Biology
81(3):221–236.

King, Gary. 1995. “Replication, Replication.” PS: Political
Science and Politics 28(3):444–452.

King, Gary. 2007. “An Introduction to the Dataverse Net-
work as an Infrastructure for Data Sharing.” Sociological
Methods & Research 36(2):173–199.

Olson, Mancur. 1965. The Logic of Collective Action: Pub-
lic Goods and the Theory of Groups. Harvard Economic
Studies. Cambridge, MA: Harvard University Press.

Owen, Matt, Kosuke Imai, Gary King and Olivia Lau.
2012. Zelig: Everyone’s Statistical Software. R package
version 4.1-1. http://CRAN.R-project.org/package=
Zelig

Palmer, Justin. 2013. “Introducing Contributors.” https:
//github.com/blog/1360-introducing-contributions.

Stodden, Victoria. 2009. “The Legal Framework for Re-
producible Scientific Research.” Computing in Science
& Engineering 11(1):35–40.

37Enterprising journals could create GitHub organization accounts. This would require some more work to apply the appropriate legal protections
as they are not ‘in the box’.

http://wiki.creativecommons.org/Data
http://wiki.creativecommons.org/Data
http://CRAN.R-project.org/package=Zelig
http://CRAN.R-project.org/package=Zelig
https://github.com/blog/1360-introducing-contributions.
https://github.com/blog/1360-introducing-contributions.

16 The Political Methodologist, vol. 20, no.2

Wickham, Hadley and Winston Chang. 2012. devtools:
Tools to make developing R code easier. R package
version 0.8. http://CRAN.R-project.org/package=
devtools.

Xie, Yihui. 2011. “How to Become an Efficient and Collabo-
rative R Programmer.” http://yihui.name/en/2011/
12/how-to-become-an-efficient-and-collaborative
-r-programmer/.

A Tutorial on Deploying and Using
Amazon Elastic Cloud Compute Clus-
ters

John Beieler
Pennsylvania State University
jub270@psu.edu

The Cloud and You

With the datasets analyzed by Political Scientists growing
ever larger and analysis becoming more complex, it is of-
ten necessary to utilize more powerful computing resources.
Research using large amounts of network data, event data,
or textual data often pushes the limits of what an individual
machine can accomplish in a reasonable period of time, if
at all. The use of cloud resources allows tasks that take a
large amount of time to be offloaded to a remote server in
order to free up the user’s local machine. Alternatively, for
tasks larger than one computer can handle, one can divide
and distribute a job across a cluster of servers. While many
universities offer high-performance computing resources, it
is often the case that the user does not have free reign over
what software is installed; it can take hours, days, or even
weeks to have a required piece of software installed by the
server administrators. Additionally, jobs on university re-
sources are typically restricted to a certain run length, such
as 24 hours. The use of a remote server that you rent, for
as little as two cents per hour, enables whatever software is
necessary to be installed when desired, and for jobs to be
run as long as required. Amazon’s Elastic Compute Cloud
(EC2) environment provides access to these cloud resources
for the rental of a server or cluster of servers. Amazon EC2
allows for the creation of a cluster with up to 20 machines,
each with multiple processing cores available. This is a large
amount of computational power available on demand and at
relatively low cost.

While EC2 offers quick and straightforward rental of
computing resources, setting up and managing the servers
comes with a rather steep learning curve. This article pro-
vides a brief introduction to the setup and use of EC2 re-
sources. The focus is on the use of the Starcluster utility

for creating and managing EC2 clusters. Following this, I
provide a brief overview of using R and Python in parallel
on a server cluster. Code and examples for the routines
presented below are hosted on github.

Starcluster and EC2

Before starting an analysis on an EC2 server, it is neces-
sary to follow a few steps to set up the server. There are
two primary components of an EC2 server: the instance,
which refers to the hardware used, and the Amazon Ma-
chine Instance (AMI), which refers to the software deployed
on the machine such as the operating system and other pack-
ages. In order to ease the deployment of an EC2 instance,
Starcluster was developed by the STAR program at MIT.

The following sections walk through the installation and
configuration of Starcluster. This entails installation of
Starcluster, the creation of an Amazon Web Services
(AWS) account, the creation of an Elastic Backed Stores
(EBS) volume for the storage of user data, and finally the
installation of software for analysis, such as R, and the at-
tendant libraries and packages, such as joblib in Python
and snow in R.

Installing Starcluster

Since Starcluster is based on Python it is possible to easily
install the utility using the easy install method.1 Unfor-
tunately, easy install does not come prepackaged with a
Python distribution. To install easy install in a Unix-like
environment, download the appropriate Python egg from
the Python Package Index, change into the directory that
contains the egg, and run the shell script. Installing Star-
cluster requires the presence of a C compiler. On OS X,
XCode must first be installed from the App Store. Within
XCode, the command-line tools must be installed by select-
ing in the menubar XCode → Preferences → Downloads
and installing the Command Line Tools. On other Unix-like
systems, if a C compiler is not already installed, one can be
loaded using the package-management method used on that
particular distribution. This will then allow the installation
of Starcluster on the local machine.

#Change to the directory where the egg was downloaded

cd ~/Downloads

1This tutorial will assume the reader is working in a Unix-like environment such as Linux or OS X and has Python already installed. If on
Windows, tutorials on installing Python and easy install can be found here and here.

http://CRAN.R-project.org/package=devtools.
http://CRAN.R-project.org/package=devtools.
http://yihui.name/en/2011/12/how-to-become-an-efficient-and-collaborative
http://yihui.name/en/2011/12/how-to-become-an-efficient-and-collaborative
-r-programmer/.
https://github.com/johnb30/polmeth_ec2
http://star.mit.edu/
http://pypi.python.org/pypi/setuptools#files
http://pypi.python.org/pypi/setuptools#files
http://www.python.org/getit/
http://pypi.python.org/pypisetuptools#windows

The Political Methodologist, vol. 20, no. 2 17

#Execute the shell script sh setuptools-0.6c11-py2.7.egg

#Install starcluster sudo easy_install StarCluster

Following the install, typing starcluster help into the
command-line will bring up dialogue asking the user to se-
lect an option for the configuration file. At this point type
2, which will save the config file in the e/.starcluster
directory. The following section describes the information
the config file should contain.

Configuring Starcluster

With Starcluster installed, it is necessary to set up the
configuration file for Starcluster. There are two basic
parts to the configuration file: user information and instance
information. The following sections provide guidance for
adding the AWS user information to the config file, as well
as adding the various templates and other options necessary
to create an EC2 instance.

Configuring User Information. All configuration op-
tions for Starcluster are found in the config file located
in the e/.starcluster directory. The default config pro-
vided by Starcluster has numerous comments and options.
It is good to keep these in the file in order to see the avail-
able options, but in the interest of clarity I have provided
a cleaner config with the configuration discussed in this
article at the github link provided earlier.

The first step to configuring Starcluster is to create an
Amazon AWS account. Once an account is created, navi-
gate to the “Security Credentials” page, which can be found
in the drop-down menu entitled “My Account/Console” at
the top right corner of the page displayed immediately af-
ter login. Once on the “Security Credentials” page, in the
“Access Credentials” section there is the option to create
a personal access key. First create an access key, and then
copy down the Access Key ID, the Secret Access Key, and
the Account Number, which can be found toward the top of
the page under the name used to register the account. This
information should be placed in the config file in the section
entitled AWS Credentials and Connection Settings. To
open and edit the config file, execute the following com-
mands:2

cd ~/.starcluster

vim config

#Or depending on your editor preferences

emacs config

#On Mac, the following will open the config file in TextEdit

open config

Next, a pair of SSH keys must be created. SSH stands
for secure shell, and is a method for “tunneling” securely
from one computer to another. Starcluster uses SSH to
allow to access to the EC2 instance. To create the key pair,
execute the following commands:
#If the ~/.ssh directory does not exist

mkdir ~/.ssh

starcluster createkey aws_key -o ~/.ssh/aws_key.rsa

This will create a key in the /.ssh directory on the lo-
cal machine. This information should then be added to the
config file in the Defining EC2 Keypairs section. The
updated section should read as follows:
[key aws_key]

KEY_LOCATION=~/.ssh/aws_key.rsa

The next step is to create an Elastic Backed Storage (EBS)
volume in order to store data in a persistent manner.3 In
the AWS management console, which is accessed by clicking
the “My Account/Console” link at the top of the page after
logging in to AWS, navigate to the EC2 section, followed by
the “EBS Volumes” page under “My Resources.” Once on
this page, create a new volume, with volume type of “stan-
dard” and the desired amount of storage4, and copy down
the Volume ID to add to the Configuring EBS Volumes
section of the config file. For this example, the EBS vol-
ume will be named data and will be mounted on the cluster
at /root/data. This gives the following configuration:
[volume data]

VOLUME_ID = #INSERT ID

MOUNT_PATH = /root/data/

The final step is to uncomment, i.e., delete the “#” sym-
bols around, the ipcluster plugin, which is located roughly
around line 280 in the plugins section of the configuration
file. After completing these steps the config file is prop-
erly setup with the basic user and configuration information.
The next step is to define various server configurations that
will be used.

Configuring Cluster Templates. There are three pri-
mary components to the setup of a server: the AMI used,
the instance type, and the size. The individuals at the STAR
program have generously provided public AMIs that have
many of the components necessary for scientific research
such as Python, OpenMPI, and the Sun Grid Engine, al-
ready present. The next section will cover creating your
own AMI as an alternative to using the STAR AMIs. The
second component necessary to create an EC2 instance is
the instance type; Amazon offers numerous instance types
with varying configurations and prices. For the purposes
of this tutorial, the 64-bit Starcluster AMI will be used

2It might be useful at this junction to point out that the use of a “programmer’s” editor will likely be necessary. When working on a remote
server it often is not possible, or is very difficult, to use a graphical editor. Text-based editors such as vim or emacs come preloaded on almost
every instance of Linux available. They are very powerful and useful, but come with a fairly steep learning curve.

3You can store data on the instance itself, but if you terminate the cluster the data is deleted. EBS storage allows you to terminate and restart
clusters and keep the same data.

4For the examples used in this article a small amount of storage is necessary; 5 GiB should suffice.

https://github.com/johnb30/polmeth_ec2
https://aws.amazon.com/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2 pricing/

18 The Political Methodologist, vol. 20, no.2

on the M1 Extra Large instance type. This leads to the
following configuration, defined in the Defining Cluster
Templates section:

[cluster base]

KEYNAME = aws_key

CLUSTER_SIZE = 1

CLUSTER_USER = john

CLUSTER_SHELL = bash

NODE_IMAGE_ID = ami-999d49f0

NODE_INSTANCE_TYPE = m1.xlarge

VOLUMES = data

PLUGINS = ipcluster

While this setup is sufficient for many use cases, there are
other situations that might require more memory or more
nodes in the cluster. Starcluster allows for the definition
of further templates in the Defining Additional Cluster
Templatessection. The following code defines a small clus-
ter with the same basic characteristics as the base configu-
ration, but starting two nodes instead of one.

[cluster basecluster]

EXTENDS = base

CLUSTER_SIZE = 2

The final step is to head back up to the beginning of the
config file and define the DEFAULT TEMPLATE as base.

Using the Cluster. With all of the configuration options
defined, the EC2 instance can finally be spun up and used.
The following code will start a server named “mycluster”
which can then be accessed using SSH. The first attempt to
SSH into a server will be met with a long message about
unknown hosts. This is nothing to worry about; just type
“yes” and hit return.

starcluster start mycluster

starcluster sshmaster mycluster

Alternatively, a cluster following the basecluster configu-
ration can be started by running:5

starcluster start mycluster -c basecluster

starcluster sshmaster mycluster

Users must issue the starcluster terminate
mycluster command to shut the EC2 instance down. It
is important to note that if the instance is not explicitly
terminated the instance will keep running and you will be
charged for the uptime of the server. Once connected to

the cluster operation is the same as any Unix command-line
interface.6 In order to exit the server and terminate the
instance, the following commands are used:

#This will exit the EC2 instance and returns to the local

machine exit

starcluster terminate mycluster

Adding Software and Creating AMIs. Creating a
custom AMI is optional for the use of an EC2 instance.
If one desires, software and packages can be loaded to the
instance each time it is started. Having an AMI with all of
the software pre-loaded, however, can save a large amount
of time and repetitive action. In addition, having this AMI
created will ensure that the same software is installed on all
nodes within a cluster. Thus, the following example shows
how to load the libraries and software needed for the rest of
this tutorial, such as R and various Python packages, and
how to create an AMI that will allow this same software
configuration to be loaded repeatedly. This section assumes
that the reader wishes to create a custom AMI to be reused.
If not, the commands used to install software should be is-
sued on the instance used to run analyses. The following
commands start a special type of EC2 instance configured
for the creation of AMIs and SSHs into the instance as usual.

starcluster start -o -s 1 -i m1.xlarge -n ami-999d49f0

imagehost

starcluster sshmaster imagehost

The AMI that the custom AMI is built upon runs
on the operating system Ubuntu, which is a spe-
cific distribution of Linux. Ubuntu uses the com-
mand apt-get install to install programs.7 Before
installing packages, however, it is necessary to tell
Ubuntu to look in a different location for the newest
version of R. In the file /etc/apt/sources.list add
the line deb http://cran.mtu.edu/bin/linux/ubuntu
oneiric/. This will allow the newest version of R to be
installed instead of version 2.13, which is usually installed
by using apt-get.

apt-get update

apt-get install r-base-core

easy_install pip

pip install pandas

pip install joblib

R

5I advise against having multiple, different instances running at once. It is far too easyto forget how many are running, which can lead to a
rather large (and unexpected) bill at the end of the month.

6EC2 will close the connection if the session does not receive any input. This means that if a job or script is running, but nothing is typed into
the terminal, EC2 will close the connection and the progress on the job will be lost. Thus, it is often a good idea to split jobs into GNU Screen
sessions. This is done by typing screen -S analysis, which will create a screen session named analysis. To exit from a screen session simply use
the command Ctrl-a-d, which indicates that the control key should be held down while pressing a then d. Then the screen session can be resumed
using screen -r analysis.

7Reference is often seen to sudo apt-get install; the presence of sudo tells the machine to run the following command as the root user. This
addition is unnecessary in this situation since the user is logged in to the instance as the root user already.

https://www.gnu.org/software/screen/

The Political Methodologist, vol. 20, no. 2 19

Once inside the R session, it is necessary to install several
packages that will be of use later when performing anal-
yses in parallel. The specific packages used are (Analyt-
ics 2012c), doParallel (Analytics 2012a), snow (Tierney,
Rossini, Li and Sevcikova 2012), and doSNOW (Analytics
2012b).After these packages are installed, R can be exited,
as can the instance itself.

install.packages(‘foreach’)

install.packages(‘doParallel’)

install.packages(‘snow’)

install.packages(‘doSNOW’)

q()

exit

Now back at the local machine’s command line, it is time
to create the custom AMI. Executing the following code will
create an AMI with a unique AMI ID that can be placed in
the config file in place of the STAR AMI that is currently
in use. In other words, the new AMI ID would replace
ami-999d49f0 in the configuration.

#Note instance ID

starcluster listinstances

starcluster ebsimage <INSTANCE-ID> analysis-image

#Note the new AMI ID that prints out

starcluster terminate imagehost

Performing Analyses on a Cluster

The server has now been configured and R, along with other
libraries and packages, has been installed. At this point R
can be used as it is on any other machine, but with the po-
tential for much more computational power. The features of
EC2 can be utilized for either cluster or multicore process-
ing, depending on the problem. One potential situation that
can arise when analyzing big data is that a long job needs to
be offloaded onto a remote server. In this situation multi-
core processing, which is the use of multiple cores on a single
CPU within the machine, may be advantageous. If a spe-
cific task is too large for a single machine to handle, due to
issues such as RAM limitations, cluster computation, or us-
ing multiple machines to perform the computations, may be
warranted. It is important to note that the use of a cluster
is not always necessary; sometimes a machine with a large
amount of RAM is sufficient for the task and will allow for
greater simplicity (Rowstron, Narayanan, Donnelly, O’Shea
and Douglas, 2012). The various instance types available
on EC2 allow for the selection of the proper setup for either
situation.

Given these two different environments, multicore or
cluster, different steps are required depending on which is

utilized for a given task.8 This section focuses on “em-
barrassingly parallel” situations of the type commonly en-
countered in basic data cleaning, data subsetting, or data
simulations, e.g. Monte Carlo simulations. I define “embar-
rassingly parallel” problems as those that can commonly be
approached using a for-loop in a computer program. The
running example used is a function that generates 100 draws
from the uniform distribution 100 times, which are then
transformed to the exponential distribution from which a
mean is calculated. This function is then called 100 times.9

Using R on EC2

Multicore. The following example makes use of the
foreach library in R. The additions needed to run code in
parallel in a multicore setting are to register a parallel back-
end, using makeCluster()and registerDoParallel, and
the addition of %dopar% instead of %do% before the function
being used, which will call the function in parallel instead
of sequentially. In R,

l ibrary (f o r each)
l ibrary (d o P a r a l l e l)

c l = makeCluster (3)
r e g i s t e r D o P a r a l l e l (c l)

u n i f . t rans = function (){
r e s u l t s = matrix (nrow=100 ,ncol=100)
for (i in 1 :100){
r e s u l t s [i ,] = runif (100)
exponent i a l = −log (r e s u l t s)
}
return (mean(exponent i a l))

}

x = fo r each (i =1:100 , . combine=’ c ’)
%dopar% u n i f . t rans ()

mean(x)

Cluster. Performing analysis utilizing a cluster of com-
puters uses a similar approach, but requires some commu-
nication between the various nodes within the cluster. R has
some packages, such as snow and snowfall, that assist in
this. The first step is to create a cluster with more than one
node in it, such as defined by the basecluster template.
The following code assumes that any other instances named
mycluster have been terminated. Additionally, the follow-
ing should be executed on the user’s local machine in order
to create the new EC2 instance.

starcluster start mycluster -c basecluster

#Note the IP Address of the instances in the cluster

starcluster listclusters

8An added level of complexity not covered is the combination of cluster and multicore computing. In short, one can create a job that shares
work amongst nodeson a cluster, which is then further divided amongst multiple cores. To achieve this, one must simply combine the two different
sets of code outlined in the multicore and cluster sections below.

9This is an admittedly trivial example, but it shows the basics of how a Monte Carlo simulation might proceed in a cluster or multicore
environment.

20 The Political Methodologist, vol. 20, no.2

The approach for analysis on a cluster environment is
extremely similar to that for a multicore environment; the
main difference lies in how the parallel backend is created.
For the cluster setting, it is necessary to specify the IP ad-
dresses of the nodes included in the cluster.

l ibrary (snow)
l ibrary (doSNOW)
l ibrary (f o r each)

#Replace MASTER and NODE001 with the
appropr ia t e IP Address

c l = makeCluster (c (’MASTER. compute−1.
amazonaws . com ’ ,

’NODE001 . compute−1.amazonaws . com ’) ,
type=’SOCK’)

registerDoSNOW (c l)

u n i f . t rans = function (){
r e s u l t s = matrix (nrow=100 ,ncol=100)
for (i in 1 :100){
r e s u l t s [i ,] = runif (100)
exponent i a l = −log (r e s u l t s)
}
return (mean(exponent i a l))

}

x = fo r each (i =1:100 , . combine=’ c ’)
%dopar% u n i f . t rans ()

mean(x)

snow also comes packaged with parallel and cluster versions
of the apply family of functions. A more detailed discussion
of these can be found in the snow documentation.

Using Python on EC2

Multicore. The easiest approach for implementing em-
barrassingly parallel for-loops in a multicore situation in
Python is the Parallel functionality of the joblib pack-
age. The code below illustrates the use of joblib in the
same toy simulation used in the R examples. The heart of
the code below is the call to the Parallel function. The
n jobs argument tells the function how many cores to use; -
1 indicates the use of all available cores. The uniform trans
function is then called 100 times, with these 100 calls split
across all available cores.

starcluster sshmaster mycluster

ipython

from j o b l i b import P a r a l l e l , de layed
import numpy as np
import s c ipy . s t a t s as s t a t s

def un i fo rm trans () :
r e s u l t s = l i s t ()
for i in xrange (1 0 0) :

r e s u l t s . append (s t a t s . uniform . rvs
(s i z e =100))

r e s u l t s = np . asar ray (r e s u l t s)
exponent i a l = −np . l og (r e s u l t s)

return np . mean(exponent i a l)

means = P a r a l l e l (n j obs =−1)(de layed
(un i fo rm trans) ()

for in xrange (100))
f inalMean = np . mean(means)

Cluster. For analysis on a cluster using Python, the de-
velopers of Starcluster had the foresight to include the
IPython (Perez and Granger, 2007) cluster plugin. This al-
lows analysis to be easily forked to different nodes within a
server. The main difference is that it is necessary to login
to the EC2 instance with a different user than root, hence
why the user john was defined in the config above. The
basic functioning of the below code is to create a Client
object, which contains the information about the available
nodes in the cluster. The nodes object is then assigned all
possible worker nodes. The asynchronous map function is
then usedto split the code between the nodes and collect the
results in an asynchronous manner.10 A final point of inter-
est is that since the function is being sent to various worker
nodes, it is necessary to import the appropriate packages
within the function itself.
starcluster sshmaster mycluster -u john

ipython

from IPython . p a r a l l e l import Cl i en t
import numpy as np

c l u s t e r = Cl i en t (packer=’ p i c k l e ’)
nodes = c l u s t e r [:]

def uni form trans form (z) :
import s c ipy . s t a t s as s t a t s
import numpy as np
r e s u l t s = l i s t ()
for i in xrange (1 0 0) :

r e s u l t s . append (s t a t s . uniform . rvs
(s i z e =100))

r e s u l t s = np . asar ray (r e s u l t s)
exponent i a l = −np . l og (r e s u l t s)
return np . mean(exponent i a l)

gather = nodes . map async (uni form transform ,
xrange (100))

means = gather . get ()
mean = np . mean(means)

Resources and Final Thoughts

While this article serves as an extremely brief introduc-
tion, there are many resources available for exploring par-
allel computation in R and Python in greater depth. Before
explicating these resources, however, a final note on using
parallel processing is in order. For small examples like the
one used in this article, it is sometimes slower to run the
process in parallel due to the scheduling and recombining
of results. It is important to identify the bottleneck in your

10Further explanation of map async is located in the IPython Documentation.

http://cran.r-project.org/web/packages/snow/snow.pdf
http://packages.python.org/joblib/
http://ipython.org/ipython-doc/stable/parallel/parallel_multiengine.html#non-locking-execution

The Political Methodologist, vol. 20, no. 2 21

workflow. If you are trying to fit a model to a large amount
of data and hitting memory limits, it is likely easier to use
the high memory EC2 instance with 68 GB of memory.11

On the other hand, if your data subsetting script is taking
an hour or more to run, a cluster or multicore solution might
be useful. In addition, some problems are not easily paral-
lelized while others are not parallelizable at all. The type of
algorithms that are easily parallelized, however, could serve
as the subject of an entirely different article.12

If multicore or cluster computing is the best way for-
ward for a given problem, there has been a copious amount
of (digital) ink spilled outlining the various options available
for parallel computation in both R and Python. In R there
are the foreach, snow, and snowfall packages discussed in
this article, in addition to the various implementations of
apply.13 There are also explicit implementations of MPI
in R such as Rmpi, a good example of which, along with
a less trivial usage of parallel processing than presented
in this article, can be seen here. In Python, MPI is also
available, as is the multithread package. The easiest and
most straightforward approach, however, is to make use of
IPython and joblib. These two should cover almost any
imaginable scenario. With this in mind, the aim of this ar-
ticle was not to provide an exhaustive tutorial on parallel
computation; in reality this would devolve into a repeti-
tion of the documentation for the various implementations
mentioned above. Rather, the hope is that this article has
provided the reader with a working understanding of, and a
quick-start guide for, 1) initiating and running an AWS EC2
instance and 2) utilizing an EC2 instance for the purposes

of parallel computing in R and Python.

References

Perez, Fernando and Brian E. Granger. 2007. “IPython: a
System for Interactive Scientific Computing.” Computer
Science Engineering 9(3):21–29.http://ipython.org.

Rowstron, Antony, Dushyanth Narayanan, Austin Don-
nelly, Greg O’Shea and Andrew Douglas. 2012. “No-
body ever got fired for using Hadoop on a clus-
ter”. In HotCDP 2012 -1st International Work-
shop on Hot Topics in Cloud Data Processing.
Bern, Switzerland: https://research.microsoft.
com/pubs/163083/hotcbp12%20final.pdf.

Revolution Analytics. 2012a. doParallel: Fore-
ach parallel adaptor for the parallel package. R
package version 1.0.1.http://CRAN.R-project.org/
package=doParallel.

Revolution Analytics. 2012b. doSNOW: Foreach parallel
adaptor for the snow package. R package version 1.0.6.
http://CRAN.R-project.org/package=doSNOW.

Revolution Analytics. 2012c. foreach: Foreach looping con-
struct for R. R package version 1.4.0. http://CRAN.
R-project.org/package=foreach.

Tierney, Luke, A. J. Rossini, Na Li and H. Sevcikova. 2012.
snow: Simple Network of Workstations. R package ver-
sion 0.3-10. http://CRAN.R-project.org/package=
snow.

Fielding Complex Online Surveys using
rApache and Qualtrics

Taylor C. Boas and F. Daniel Hidalgo
Boston University and Massachusetts Institute of Technology
tboas@bu.edu and dhidalgo@mit.edu

Introduction

Online surveys are increasingly popular in political science
as an easy and inexpensive way to gather data and con-

duct experiments. Typically, scholars use an online survey
engine, such as Qualtrics, SurveyGizmo, or SurveyMonkey,
to administer the questionnaire and handle any experimen-
tal manipulation.1 Compared to programming a survey
from scratch and hosting it on one’s own server, commer-
cial survey packages present many advantages. They are
user-friendly and reliable, offer an attractive graphical user
interface, and may be available at no cost for scholars whose
universities purchase site licenses. Their high levels of data
security and built-in anonymity features should also make
them more attractive to Institutional Review Boards than

11In fact, as I was writing this I received an email from Amazon announcing new types of instances that have 244 GiB of RAM and two Intel
Xeon processors, which each have 8 cores for 16 total physical cores and 32 total threads. In reality this instance should be more than enough
firepower for nearly any application that could arise in political science research.

12In short, if an algorithm contains the summation of results it is probably possible to run it in parallel.
13A good resource for a high level overviewfor some of these commands is Ryan Rosario’s presentation on parallelizing R, available here.
1Recruitment of subjects or respondents—a separate and prior step—might rely on Amazon.com’s Mechanical Turk, Facebook advertisements,

or a convenience sample drawn from one’s university.

http://math.acadiau.ca/ACMMaC/Rmpi/examples.html
http://ipython.org
https://research.microsoft.com/pubs/163083/hotcbp12%20final.pdf.
https://research.microsoft.com/pubs/163083/hotcbp12%20final.pdf.
 http://CRAN.R-project.org/package=doParallel
 http://CRAN.R-project.org/package=doParallel
http://CRAN.R-project.org/package=doSNOW
http://CRAN.R-project.org/package=foreach
http://CRAN.R-project.org/package=foreach
http://CRAN.R-project.org/package=snow
http://CRAN.R-project.org/package=snow
http://www.slideshare.net/bytemining/taking-r-to-the-limit-high-performance-computing-in-r-part-1-parallelization-la-r-users-group-727

22 The Political Methodologist, vol. 20, no.2

self-programmed and locally-hosted surveys.
Despite their many advantages, even the most power-

ful online survey engines may present limitations in terms
of question wording customization, complex randomization,
or other goals that a researcher may wish to accomplish. For
example, in our research on Brazil, one task we were unable
to accomplish within the survey engine Qualtrics was to pull
up a list of candidates for city council from the respondent’s
municipality and randomly choose one of these names to be
inserted into a survey question.

In this article, we describe a strategy for augmenting the
capacity of online survey engines using rApache, a version
of R that runs on the Apache web server. The approach in-
volves routing respondents to a server running an R script
that, via a web interface, administers an initial set of survey
questions. Based on the answers to these questions, the R
script conducts any necessary randomization and database
lookups and then passes the results to the online survey en-
gine via the redirect URL. No respondent data are retained
by the server that is used for this preprocessing step.

We focus on our experience integrating rApache with
Qualtrics, a powerful online survey engine that is ori-
ented toward academic research and is commonly avail-
able through university site licenses.2 Qualtrics has re-
cently been used for a number of online surveys in political
science, many of which involve experimental manipulation
(Kamal et al., 2012; Kriner and Shen, 2012; Morey, Evaland
and Hutchens, 2012; Nyhan and Reifler, 2011; Popescu and
Toka, 2012; Sances, 2012; Shineman, 2012; Young and Hoff-
man, 2009; Zahedzadeh and Merolla, 2012). As we discuss
below, some of these studies might have benefited from us-
ing the method described here.

The Survey: Religion, Race, and Class in
Brazilian Municipal Elections

In late September–early October 2012, we used Qualtrics to
administer an online survey, including several experimental
treatments, to 1820 registered voters in Brazil.3 The survey
was designed to explore issues of religion, race, and class
in the country’s October 7 municipal elections. Following
the approach of Samuels and Zucco (2012a,b), we recruited
respondents using Facebook advertisements and raffled off
an iPad as an incentive for participating. The research de-
sign and results of the survey are described in greater detail
elsewhere (Boas, 2013; Smith, 2013). Here, we focus on
features that we wished to include in the online survey but
were unable to implement natively (or could do so only awk-
wardly) in Qualtrics. We then describe how we were able to

accomplish these tasks using rApache on a virtual server.
A first set of survey questions sought to gauge the ef-

fect on vote intention of candidates using professional ti-
tles, such as “Pastor” or “Doctor,” in their ballot names (a
practice this is permitted under Brazilian electoral law, and
quite common). Each question described a candidate for
city council, including his or her party, age, marital status,
and education level. Respondents in the treatment condi-
tion were given a version of the candidate’s name that in-
cluded the professional title, such as “Pastor Paulo” or “Dr.
Carlos”; those in the control condition were given full legal
name, without the title.

To increase the external validity of the survey experi-
ment, we wanted to ask a subset of respondents about real
candidates from their municipality that were running in the
upcoming election. Doing so required two steps that were
impossible in Qualtrics: gathering the respondent’s state
and municipality in such a manner that the data could be
used elsewhere in the survey, and looking up a list of can-
didates from that municipality. Qualtrics offers a question
type, Drill Down, that involves selecting items from nested
drop-down menus, and we could have used this option to ask
for the respondent’s state and then municipality. However,
if one wants to use the answer to a Drill Down question in
display logic or as piped text elsewhere in the survey (e.g.,
showing certain questions only to residents of state capitals,
or inserting municipality name into the question “How long
have you lived in ”), there is a limit on the num-
ber of categories that can be included. We are unaware of
the exact limit (and Qualtrics technical support was unable
to specify it), but Brazil’s 5568 municipalities and the 3141
counties or county-equivalents in the United States both lie
above it. We might have been able to circumvent this prob-
lem by asking respondents to input their postal code in a
text box. However, we still would have run up against a sec-
ond limitation: Qualtrics has no table-lookup feature that
we could have used to match municipality name or postal
code to a list of candidates.

A second part of the survey sought to have respondents
characterize a large database of candidate photos in terms
of race and social class. We started with 1000 photos and
intended to show a randomly chosen photo to each of 3000
respondents, such that each photo was rated by three re-
spondents.4 Randomizing among 1000 photos would have
been possible in Qualtrics, but exceedingly awkward; we
would have had to create 1000 versions of the same ques-
tion, each with a different image URL.

In a third part of the survey, we wanted to ask a random
sample of 10% of respondents if they would be opposed to

2Given Qualtrics’s reputation as one of the most capable online survey engines available (e.g., Leland, 2011), we assume that the limitations we
have encountered while using it apply to most other packages as well.

3The survey was conducted jointly with Amy Erica Smith of Iowa State University and was approved by the Institutional Review Boards of
each of our institutions.

4We ultimately recruited fewer respondents than initially expected, and thus had to reduce both the number of photos and the number of times
that each was shown.

The Political Methodologist, vol. 20, no. 2 23

their son or daughter marrying a black person. To do this
within Qualtrics, we would have had to randomize among
this question and 9 copies of a blank question—not difficult,
but rather cumbersome.5

A final challenge was specific to our compensation
mechanism—a raffle prize for one respondent who com-
pleted the survey. In contrast to Mechanical Turk, which
allows for directly compensating participants without ob-
taining their personal data, our approach required us to
collect the names and email addresses of respondents who
completed the survey and wished to be entered into the
drawing for an iPad. However, to obtain exempt status from
the IRB, names and emails could not be linked to survey re-
sponses. The solution was to collect personal data through
a second Qualtrics survey to which interested respondents
would be redirected after completing the first one. However,
we were concerned that savvy users might copy the URL of
the second survey and distribute it to friends, or use it them-
selves to enter the raffle multiple times with different email
addresses.6 Hence, we needed a unique identifier for each
respondent that would be passed from the first survey to
the second, but, for purposes of anonymity, not generated
by or recorded in the first survey.

The Solution: Preprocessing with rApache
on a Virtual Server

We employed rApache as our server side solution. rApache
is a module for Apache developed at Vanderbilt University
that embeds the R interpreter inside a web server. rA-
pache allows the Apache web server to interact with R,
which is useful when one wants to use R’s advanced sta-
tistical and data management tools to manipulate data re-
ceived through a web interface. rApache requires Apache
2.2.x or above with an installation of R. In our partic-
ular case, we used an Ubuntu virtual server hosted by
the firm Linode (http://www.linode.com), but any stan-
dard Linux-based web server should suffice. Instalation in-
structions are documented in the rApache manual (http:
//rapache.net/manual.html), but some familiarity with
Apache server administration is required.

Our questionnaire, a standard web form, initiates a GET
request that passes values of the items entered into the form
to R. The HTML web form would look something like the
following:

<form method="GET" action="/r-scripts/SendToQualtrics.R">

Choose the state where you vote

<select name="state" id="state">

<option value="">Select a state</option>

<option value="AC" >Acre</option>

<option value="AL" >Alagoas</option>

<option value="AP" >Amapa</option>

<option value="AM" >Amazonas</option>

...

</select>

<input type="submit" value="Advance">

</form>

In this example, the user is presented with a drop-down
menu and asked to choose the state where they vote. One
could then conduct a survey experiment in which the con-
tent of the question prompt would depend on the respon-
dent’s state. For example, the researcher could ask re-
spondents for an evaluation of their state governor’s job
performance, randomly assigning them to be presented
with the governor’s party affiliation. Much more compli-
cated randomization schemes and data lookups could be
accommodated—including the one we used, which depended
upon the respondent’s state and municipality—but this run-
ning example illustrates the basic method. While this par-
ticular example could have been implemented in Qualtrics
using branching or display logic, it would have been cum-
bersome to do so for Brazil’s 27 states.

The only necessary change to standard HTML is the
need to specify the R file to be called once the form is sub-
mitted. Notice that in the action variable in the form
header, we specified an R file called SendToQualtrics.R.
This is the R file that will handle the data entered by the
user. Upon clicking on the “Advance” button, the data en-
tered into the form is sent to an R instance. The data arrives
in R in the form of the of a list object called GET, with an
element for each variable in the form.

R receives the data as a list object that can then be
manipulated. In this particular case, R would launch and
run the script SendToQualtrics.R which could operate on
the data contained in the GET list object, where the name
of each element is given by the name attribute of the form.
The element in the list object would contain the “value”
specified for that particular choice in the HTML (i.e., the
state abbreviations). In the case of a respondent selecting
Acre in the menu, R would receive the following web object:

> GET

$state

[1] "AC"

In this hypothetical case, one could have the server-side
R script load a dataset containing the names and party af-
filiations of all state governors. The R script could then
contain functions that operate on the GET list, such as:

5More generally, one cannot directly specify unequal probabilities of selection when randomizing among questions. Hence, assigning one-tenth
of a sample to a treatment condition and the rest to control would require making 9 copies of the control question.

6Qualtrics has an HTTP Referrer Verification feature that could be used to block users not being redirected from the first survey. However, it
would also block all those who had HTTP referral disabled on their browser for security or privacy reasons, and we were reluctant to do this.

http://www.linode.com
http://rapache.net/manual.html
http://rapache.net/manual.html

24 The Political Methodologist, vol. 20, no.2

getGovernorData <- function(state){

treat <- sample(0:1, 1)

gov_name <- governors$name[governors$state == state]

gov_party <- governors$party[governors$state == state]

question_name <- ifelse(treat == 1,

paste(gov_name, " (", gov_party, ")",

sep = ""),

gov_name)

URLencode(question_name)}

This function accepts the state abbreviation passed by
the web server, randomly assigns the respondent to a treat-
ment or control condition, and then produces the name that
will be presented in the survey prompt (with or without
the party label, depending on treatment status). Because
this customized text will be passed to Qualtrics in the form
of “embedded” text in a URL, special characters must be
encoded. This list includes accented characters such as
“á”, which needs to be transformed into “%c3%a1”, as well
as a variety of more common characters, such as a space
(“%20”). The R function URLencode() performs this trans-
formation as necessary; we recommend using it regardless
of whether one’s data include accented characters.

To pass the data to Qualtrics, we need to em-
bed it in the URL that sends the user to the
rest of the online questionnaire. Qualtrics pro-
vides a unique URL for each survey, of the form
http://www.qualtrics.com//SE/?SID=SV_545454, where
the SID= field specifies the survey number. Additional vari-
ables can be appended to this URL in the form &var=value.
To construct the URL in R, the following code would suf-
fice:
gov_name <- getGovernorData(GET$state)

forwardUrl <- paste("http://www.qualtrics.com//SE/?SID=

SV_545454&gov=, gov_name, sep = "")

The last step is to forward the respondent to the
Qualtrics website with the data embedded in the redirect
URL. To do so, at the end of our R script we used the
following code:
setContentType("text/html")

cat("<head>")

cat("<code>")

cat("</code>")

cat(paste("<meta HTTP-EQUIV=\"REFRESH\"

content=\"0; url=", forwardUrl, "\">", sep =""))

cat("</head>")

cat("<html>")

cat("<body>")

cat("</body>")

cat("</html>")

This code asks R to generate a blank HTML website
with the single purpose of immediately forwarding the re-
spondent to the Qualtrics website and passing along the
embedded data.

In our survey, we used preprocessing in rApache to han-
dle each of the four randomization and wording customiza-

tion tasks described in the previous section. Through a
similar process to the “governor” example above, we used
the respondent’s state and municipality to look up a list of
city council candidates with “Pastor” and “Doctor” titles,
randomly choose one candidate from each list, assign the re-
spondent to the treatment or control condition (ballot name
with professional title or full legal name), and pass the re-
sulting name and candidate biographical data to Qualtrics.
This included full phrases, such as

&marital=she%20is%20married_

that were inserted directly into the survey question as piped
text.

Our additional randomization tasks were straightfor-
ward. To choose a candidate photo for the respondent to
evaluate, we had R sample from a vector of 1000 filenames,
passing along the result in the form &photo=photo1.jpg.
In order to ensure that each photo was shown no more
than three times, we had our photo-choosing function check
the server log; if the limit had been reached, another file
was chosen. To display the photo in Qualtrics, we cre-
ated a Text/Graphic item, and then, in HTML view, in-
serted the embedded data field into the image URL, e.g.,
.

To select the 10% of respondents who would be asked about
their son or daughter marrying a black person, we did
sample(c(1,rep(0,9)),1) in R and passed along the re-
sult to Qualtrics as &marry=. We then used display logic to
show the question only when marry=1.

Finally, in order to generate a unique identifier for each
respondent, we used R’s system time function. The com-
mand as.character(as.numeric(Sys.time())) returns
the number of seconds since 1970, including fractional sec-
onds, with the level of precision determined by the operating
system (5 decimal places for our server). Hence, we could
generate a unique 15-digit code for each respondent with
as.character(as.numeric(Sys.time())*100000). This
code was passed to the main survey, and, upon comple-
tion, to the raffle survey, where it was recorded.7 As a
result, we could eliminate anyone who entered the raffle via
a “shortcut” process that did not begin with their visiting
the Linode server and obtaining a unique code.

The opportunities for complex randomization and ques-
tion wording customization go well beyond the specific ex-
amples outlined here. Qualtrics places no limits on the num-
ber of embedded data fields that can be passed in via the
URL, and virtually all browsers can handle URLs of up to
2000 characters. One practical limitation concerns possible
delays in executing the R script. Computationally-intensive
tasks might generate long pauses between when the user
hits the “submit” button on the web form and when she is
redirected to the survey. The same is true when working

7To pass embedded data out of Qualtrics, one simply creates a customized End of Survey element in Survey Flow and includes the field in the
redirect URL.

The Political Methodologist, vol. 20, no. 2 25

with large data files, since a new instance of R is started for
each user and the data have to be loaded from scratch. That
said, we found that rApache was remarkably fast, and the
delay from executing our preprocessing tasks was virtually
undetectable.

The major drawback to preprocessing survey respon-
dents in rApache is that it significantly increases the number
of moving parts in one’s survey. We found that extensive
testing was necessary in order to work out the kinks prior
to launching, and we cannot rule out the possibility that
some unknown problem arose for some respondents. Our
ad click-to-completed survey ratio of 22:1 was much higher
than the 7:1 figure obtained by Samuels and Zucco (2012b)
for a similar survey in Brazil the previous year. We think
the difference is largely attributable to our longer question-
naire and to people having less patience for surveys during
election season, but it is possible that unknown bugs caused
us to lose some respondents.

A final drawback is that it is necessary to “activate” (i.e.,
launch) the survey in Qualtrics in order to do testing on data
read in via the URL. While responses generated during this
testing period are easily discarded or separated from real
data, they will count against any quota on one’s account, in
contrast to testing done via the “Preview” function.

Alternative Solutions

While combining rApache with Qualtrics worked well for
our project, there are other solutions for implementing com-
plex randomization schemes and database lookups in an
online survey. A powerful and flexible solution would be
to build a survey engine using a web framework such as
Django, built using Python, or Ruby on Rails, built using
Ruby.8 These web frameworks employ full-fledged program-
ming languages, which would allow for the customization re-
quired by many social science online surveys. Furthermore,
they are designed to work with database backends, thus
allowing for rapid data lookups and data collection. Pack-
ages specifically designed for constructing online surveys are
available, such as Django-crowdsourcing (https://pypi.
python.org/pypi/django-crowdsourcing) and Surveyor
for Rails (https://github.com/NUBIC/surveyor). Fur-
thermore, these popular frameworks have been used for web-
sites with millions of users and thus have proven robust and
scalable for a variety of tasks. The chief drawback to this
approach is that web frameworks require a good deal of ex-
pertise to use effectively and thus can be “overkill” for the
kinds of surveys political scientists wish to field.

Another approach would be a pure R-based solution that
relies on rApache to administer the survey and collect re-
sponse data. This approach is facilitated by the use of
the “Brew” package (http://cran.r-project.org/web/

packages/brew/index.html), which is a templating frame-
work for mixing R code and text. Using Brew, one could
write an HTML template with embedded R code. When
users visit the web page, R dynamically generates the nec-
essary customized HTML within the template and serves it
to visitors. Of course, this solution would forgo the ease of
use and reliability of commercial tools like Qualtrics. Other
approaches to using R to dynamically generate web pages
are covered in Verzani (2012).

Finally, a promising recent development is the release by
the makers of RStudio of “Shiny” (http://www.rstudio.
com/shiny/), an R package that allows for the fast and easy
creation of web applications which can take advantage of R’s
statistical capabilities. The chief advantage of Shiny is that
it does not require knowledge of HTML or JavaScript and is
very easy to use. At present, it is primarily designed to serve
HTML locally, but Shiny’s developers have announced plans
for a hosting service that would allow for the deployment of
applications online.

Conclusion

Using rApache to augment the capacities of online survey
engines such as Qualtrics takes advantage of R coding skills
that many quantitative researchers already possess in abun-
dance, and it requires only a minimal amount of additional
skills, such as HTML coding or server administration, that
are less common. Even for those with the programming
ability to design and host their own surveys, integrating
with an existing survey engine might be attractive due to
their proven reliability and data security, as well as the fact
that they are often available for free through university site
licenses.

Our article has described applications of the rApache-
plus-Qualtrics method that were specific to our own sur-
vey, but potential uses are much broader. Kriner and Shen
(2012), for instance, use an online survey experiment con-
ducted in Qualtrics to test the hypothesis that public sup-
port for war is more greatly affected by news of casualties
that are local. In the treatment condition, respondents read
a news story about the death in Afghanistan of a U.S. soldier
from their home state, which they had specified earlier in
the survey. In the control condition, a randomly chosen dif-
ferent state is specified. State, of course, only imperfectly
operationalizes the concept of “local.” An ideal strategy
might be to ask for the respondent’s ZIP code early in the
survey and then describe the casualty as being from the
corresponding county—a data lookup task that would be
impossible within Qualtrics but is easily accomplished us-
ing our method. The effects of a “home county” treatment
might be even larger than those (already sizable and sig-
nificant) that Kriner and Shen (2012) found for causalities

8A promising set of tools for the creation and administration of online surveys is “Shanks,” developed by Mark Fredrickson (https:
//github.com/markmfredrickson/shanks). These tools are written in Clojure and run on top of Google App Engine.

https://pypi.python.org/pypi/django-crowdsourcing
https://pypi.python.org/pypi/django-crowdsourcing
https://github.com/NUBIC/surveyor
http://cran.r-project.org/web/packages/brew/index.html
http://cran.r-project.org/web/packages/brew/index.html
http://www.rstudio.com/shiny/
http://www.rstudio.com/shiny/
https://github.com/markmfredrickson/shanks
https://github.com/markmfredrickson/shanks

26 The Political Methodologist, vol. 20, no.2

from one’s home state.
Another potential application of our method involves as-

signing respondents to experimental conditions when one
wants to end up with a specific number of completed surveys
in each group—something that may be especially important
for smaller-N survey experiments. In their N = 60 study,
for instance, Zahedzadeh and Merolla (2012, 13) ended up
with fewer respondents than desired in some experimental
conditions because subjects dropped out after assignment
but before completing the survey. Qualtrics is capable of
ensuring that equal numbers of respondents are assigned to
different conditions—using the “evenly present elements”
option in the Randomizer—but it cannot take into account
whether respondents in each condition actually complete the
survey. Using our method, Qualtrics could communicate
with the server running rApache upon survey completion,
e.g., by loading one of two blank image files, treat.jpg or
control.jpg, on the last page of the survey. Probabilities of
assignment, which would be done in advance by rApache,
could be adjusted each time by consulting the server log,
which would record the number of times each image was
loaded.

For our specific research on voting behavior and can-
didate evaluations in Brazil’s 2012 local elections, prepro-
cessing via rApache allowed us to substantially boost the
external validity of a survey experiment by asking respon-
dents about real candidates from their municipalities. It
also permitted forms of randomization, such as choosing 1
out of 1000 candidate photos, that would have been exceed-
ingly awkward to implement in Qualtrics. Hopefully other
researchers can use the method we propose to combine the
data-processing power of R with the reliability, data secu-
rity, and graphical user interface of online survey engines.

References

Boas, Taylor C. 2013. “Vote for Pastor Paulo: Religious
Ballot Names as Heuristics in Brazil.” Paper presented
at the Annual Meeting of the Southern Political Science
Association, Orlando, FL, January 3–5.

Kamal, Mia, Jason Turcotte, Donyelle Davis and Christy
Arrazattee. 2012. “An experiment in tolerance: How
religious stereotypes shape attitudes of reciprocity and
political engagement.” Paper presented at the Annual
Meeting of the Southern Political Science Association,
New Orleans, January 12.

Kriner, Douglas L. and Francis X. Shen. 2012. “How Cit-
izens Respond to Combat Casualties: The Differential
Impact of Local Casualties on Support for the War in
Afghanistan.” Public Opinion Quarterly 76(4):761–770.

Leland, Eric. 2011. “A Few Good Online Survey Tools.”
www.idealware.org, February.

Morey, Alyssa C., William P. Eveland Jr. and Mylah J.
Hutchens. 2012. “The ‘Who’ Matters: Types of Inter-
personal Relationships and Avoidance of Political Dis-
agreement.” Political Communication 29(1):86–103.

Nyhan, Brendan and Jason Reifler. 2011. “Opening the Po-
litical Mind? The effects of self-affirmation and graphi-
cal information on factual misperceptions.” Manuscript,
Dartmouth College/Georgia State University.

Popescu, Marina and Gabor Toka. 2012. “How can mass
media help citizens make sense of the political world?
Media systems and citizens cognitive political engage-
ment in Europe.” Paper presented at the workshop “Ad-
vancing comparative political communication research:
New frameworks, designs and data,” ECPR Joint Ses-
sions of Workshops, Antwerp, April.

Samuels, David and Cesar Zucco. 2012a. “The Power of
Partisanship in Brazil: Evidence from Survey Experi-
ments.” Working paper, University of Minnesota/Rut-
gers University.

Samuels, David and Cesar Zucco. 2012b. “Using Facebook
as a Subject Recruitment Tool for Survey-Experimental
Research.” Working paper, University of Minneso-
ta/Rutgers University.

Sances, Michael W. 2012. “Is Money in Politics Harming
Trust in Government? Evidence from Two Survey Ex-
periments.” Unpublished Manuscript, Massachusetts In-
stitute of Technology.

Shineman, Victoria Anne. 2012. “Incentivizing Partici-
pation Increases Political Information: Evidence from
a Randomized Field Experiment.” Paper prepared for
presentation at the Annual Meeting of the American Po-
litical Science Association, New Orleans, Aug. 30–Sept.
2.

Smith, Amy Erica. 2013. “ClericalWork: Clergy, Media,
and Religious Polarization, Brazil 2008–2012.” Paper
presented at the Annual Meeting of the Southern Polit-
ical Science Association, Orlando, FL, January 3–5.

Verzani, John. 2012. “gWidgetsWWW: Creating Interac-
tive Web Pages within R.” Journal of Statistical Software
49(10):112.

Young, Dannagal Goldthwaite and Lindsay H. Hoffman.
2009. “An experimental exploration of political knowl-
edge acquisition from The Daily Show versus CNN stu-
dent news.” Paper prepared for presentation at the An-
nual Meeting of the American Political Science Associa-
tion, Toronto, Aug. 30–Sept. 2.

Zahedzadeh, Giti and Jennifer Merolla. 2012. “How do neg-
ative political ads impact public trust in candidates?”
Paper presented at the Annual Meeting of the Western
Political Science Association, Portland, Oregon, March
22–24.

www.idealware.org

The Political Methodologist, vol. 20, no. 2 27

Crowdsourcing Panel Studies and Real-
Time Experiments in MTurk

Dino P. Christenson and David M. Glick
Boston University
DinoPC@BU.edu and DMGlick@BU.edu

While researchers conducting quick experiments and pi-
lot studies currently appear to make the most use of Ama-
zon’s Mechanical Turk (MTurk) as a subject recruitment
tool, it is capable of supporting more ambitious research de-
signs, many of which would be otherwise infeasible for most
researchers. Specifically, researchers with a modest budget
can use MTurk to recruit participants for customized and
flexible panel studies. Because it is a cloud based environ-
ment, it is easy to recontact respondents, which helps limit
panel attrition. Moreover, when used in tandem with online
survey software, panel waves can be quickly fielded around
imminent and recent political events, rather than at con-
stant intervals or other times determined well in advance.

Thus, MTurk’s attributes allow researchers to affordably
collect individual level data for pre-post comparisons that
can be combined with real-time experimental treatments. In
this piece we briefly discuss our own experience conducting
panel studies in MTurk and provide some basic instructions
for researchers looking to do the same. We utilize the design
and data from one of our own recent studies to discuss how
we took advantage of MTurk and suggest some avenues for
future research.

Implementing a Panel Study in MTurk

Last summer we implemented a five wave panel study to
capture public opinion about health care, the Supreme
Court, and politics in general around the Supreme Court’s
Affordable Care Act (ACA) decision (Christenson and
Glick, 2012). We collected two waves of data prior to the
ACA decision, two waves shortly after, and then recon-
nected with our participants for a final wave around the
November elections. In all, we were able to independently
conduct five extensive political surveys for approximately
$5,000 total. Employing an MTurk sample was not just in-
expensive but, as we show below, also offered unparalleled
flexibility for collecting panel data and implementing a real-
time experimental treatment around a real world event.

We used MTurk for sample recruitment and re-contact
while conducting the actual surveys using an online plat-
form.1 We have used both SurveyGizmo and Qualtrics in
our work and found MTurk to be equally compatible with
them. The first step in recruiting a panel is very similar to
conducting a one-time survey in MTurk. You simply have

to post a public “HIT” (MTurk jargon for an assignment
or “Human Intelligence Task”) to attract participants and
direct them to the survey. For this HIT we offered partici-
pants $1 for a 15 minute survey in which they would “answer
questions about politics and healthcare.” Following Berin-
sky, Huber and Lenz (2012a), we restricted our survey to
those in the United States with a 95% approval rating from
other MTurk “requesters” (those who post assignments like
us) on at least 50 previous assignments. Our initial HIT
also told participants that “attentive and satisfactory com-
pletion of the initial survey will earn invitations to follow up
surveys at higher pay rates.” We also advised respondents
that “we check responses to ensure that [they] read the ques-
tions and respond carefully.” Such recruitment restrictions
and clear wording regarding the length of the study lead to
more reliable samples across the waves and less respondent
drop-off on each survey.

The initial HIT must also include a link to take partici-
pants recruited in MTurk to online survey hosted elsewhere
(e.g., Qualtrics or SurveyGizmo), the generic password for
entering it, if password protected, and a box for partici-
pants to enter the unique code which serves as a receipt
they will get at the end of the survey. We recommend
explicitly telling participants both in the HIT and at the
end of the survey to return to the HIT and enter the ran-
dom number displayed at the end of the survey to claim
their compensation and approval. This last part is critical
because it is necessary for a) determining who satisfacto-
rily completed the assignment for payment, and b) linking
a participant’s surveys to each other for the panel. This
step is necessary in part because Amazon is the intermedi-
ary for all connections between researchers and participants,
which provides anonymity to the participants. Researchers
(“requesters”) fund an Amazon account with a credit card
and then Amazon deposits money in participants’ accounts
after assignments are approved. All the researcher knows
about participants is their random ID number. Both Sur-
veyGizmo and Qualtrics will produce a unique ID for the
respondent on the last page of the survey, which also ap-
pears as a variable in the survey output. Respondents can
then copy and paste or type this receipt into MTurk. In
the ACA study, we recruited participants straight into our
first wave. Alternatively, one can conduct a screener survey
prior to the full survey to ensure that those taking the survey
meet particular characteristics, which would be appropriate
for oversampling from particular populations (e.g., based on
demographic questions) or limiting the sample to particular
populations (e.g., based on geographic regions) or launching
side-by-side panels around different events without repeat
participants. Such screener surveys generally cost only a
few cents per respondent.

The authors’ names are listed alphabetically.
1We were able to conduct our first panel studies with few complications in part by utilizing the work of Berinsky, Huber and Lenz (2012a) and

their supplemental documentation online (Berinsky, Huber and Lenz, 2012b,c).

28 The Political Methodologist, vol. 20, no.2

At the end of the first wave you will have two spread-
sheets: one downloaded from the survey software with all
of the responses, and one downloaded from MTurk. To get
the latter, log in as “requester,” then select “manage,” then
click on the “batch” you want, and then choose “download
csv.” The next step is deciding whom to approve and whom
to keep in the panel. This requires matching rows in the
survey data to rows in the MTurk participant file using the
unique ID that participants entered into the MTurk HIT
and which appears in the “answer” column at the far right
of the MTurk export file. Matching with the unique identi-
fier can be done in any statistical program or spreadsheet.
We chose to compensate and approve anyone with a suc-
cessful match and those who appeared to make a good faith
effort to enter a proper unique ID (even those that may have
made a typo or otherwise gotten confused). While you can
compensate those without a perfect match, you can only
keep those for whom you can match an MTurk entry to a
survey entry in the panel.

In addition, you may want to include a few trick screener
questions in the first survey to identify those who are not
paying any attention and simply checking boxes (Berinsky,
Margolis and Sances, 2012). Because some Turkers may be
multitasking, expecting little oversight or exhausted from
previous MTurk tasks, you are likely to have some survey
satisficing.2 For example, in the ACA study, embedded in a
series of multiple choice political knowledge questions, such
as “what government position does John Roberts hold,” we
asked: “what government position (Senator, Chief Justice,
Speaker of the House, Secretary of State, None of the Above)
do you currently hold?” We deemed participants who failed
all three screeners unsatisfactory and dropped them from
the data and from the recruitment list for subsequent waves,
since they were likely not paying attention at various points
in the survey.

At the end of this process you will be able to create a
simple master panel file which comprises MTurk ID num-
bers in the first column and their corresponding wave one
survey IDs in the second column. As the panel progresses
you will simply tack on additional columns of survey IDs
after subsequent waves by matching to the MTurk IDs in
the corresponding MTurk output files. The final step in the
first wave, though it is not absolutely necessary, is giving
all of those we wanted to invite back for the second wave a
custom MTurk “qualification,” which we called “complete
1.” You can create and bulk-assign a custom qualification by
uploading a spreadsheet of MTurk IDs within the “manage”
function. MTurk will allow you to make this qualification a
requirement to view the second wave HIT which will prevent

other Turkers from accidentally trying to join the panel.

The only difference between the first wave and subse-
quent waves is that instead of posting a public HIT to re-
cruit, you will need to have Amazon send emails to your
chosen participants inviting them to the next wave. You
can do this automatically with a script. We followed Berin-
sky, Huber and Lenz (2012c) and used a simple Perl code to
feed it a text file of MTurk IDs (all of the “live” participants
from the first column of our master panel spreadsheet) and
the contents of an email which will be sent from the address
associated with your Amazon account to each participant.3

You will want to include a subject line such as “invitation
to follow up survey for $1.50” and include a link to the
proper survey and the password to enter it in the text (and,
probably, a friendly and gracious note). We placed our own
MTurk ID (which you will get when signing up) at the top
and bottom of text file so that we would get the first and last
emails to verify that the Perl script was working correctly.

For each wave after the first, you will need to create a
new HIT so that participants can enter the new code they
will get at the end of the survey. This HIT is no longer
for recruiting but is still needed for collecting survey IDs
to compensate participants and for continuing the panel.
On that note, we found that participants occasionally had
trouble accessing the HIT, and thus we ended up creating a
main HIT as well as one or two backups (with smaller Ns)
for those who got locked out of the primary HIT. Doing so
simply means that you will have to download and append
multiple CSVs from MTurk for a given wave. It is likely
that a few people will recognize that they made a mistake
entering their unique ID and email you. As long as they
send a MTurk ID and a survey code, you can update your
master sheet manually. We recommend double-checking all
non-matches manually, as some will not match due to for-
matting issues, like leading or lagging spaces (we encoun-
tered approximately five per wave like this).

You can make the HIT private by including a custom
qualification (above) as a requirement for accepting the HIT.
Importantly, you will want to make sure you can view the
HIT from your own account, so that you can copy the unique
URL and include it on the last page of the survey and/or in
the email, which points participants to the URL where they
can enter their codes. In the design phase you will have a
choice of whether to allow those who do not meet the re-
quirements (including yourself) to still be able to view a
HIT. The procedure for subsequent waves is the same, but
with a new custom qualification, new private HIT, and new
list of MTurk IDs for the Perl script to send the emails. By
the end of the process you should have a master participant

2We recommend reading little, if anything, into the “time to completion” data from MTurk. This number simply represents how long it took
for respondents to enter the survey receipt after opening the HIT. It is an accurate indicator of time only for those who open the HIT, go straight
to the survey, and then go straight back to MTurk. If one refreshes or reopens the MTurk HIT for example, their time to completion could be a
few seconds. This becomes even more relevant later when participants access the survey via an email and only go to the HIT at the end.

3You can also update your ID file partway through a wave to send a reminder email.

The Political Methodologist, vol. 20, no. 2 29

file matching MTurk IDs with each survey they completed
and output files for each wave from the survey program, i.e.,
panel data.

Panel Demographics and Attrition

The primary concern in conducting any study with a sample
of Turkers is representativeness. As with any online environ-
ment, one expects a younger, more liberal, and more tech-

nology savvy participant pool than the population at large.
These demographic traits and other features of MTurk sam-
ples are thoroughly described and analyzed in Berinsky, Hu-
ber and Lenz (2012a), and our initial ACA study sample
largely bolsters their cross-sectional findings. Before turn-
ing to the evolution of our sample over the panel waves, we
briefly describe our first wave sample demographics with an
eye towards the potential for unrepresentativeness.

Table 1: Sample Demographics and Comparison with Other Surveys

Internet Face to Face
Our BHL ANES-P CPS ANES

Variable Sample MTurk 2008-09 2008 2008

% Female 54.4 60.1 57.6 51.7 55.0
% White 79.0 83.5 83.0 81.2 79.1
% Black 7.9 4.4 8.9 11.8 12.0
% Hispanic 5.0 6.7 5.0 13.7 9.1
Age (years) 33.4 32.3 49.7 46.0 46.6
Party ID (mean 7 pt.) 3.2 3.5 3.9 3.7
Ideology (mean 7 pt.) 3.3 3.4 4.3 4.2
Education 50% Coll Grad 14.9 yrs 16.2 yrs 13.2 yrs 13.5 yrs

37% Some Coll
Income (median) 30-49K 45K 67.5K 55K 55K

Traits for our sample from wave 1 (N=1242), “BHL MTurk” = Berinsky, Huber and Lenz (2012a),, ANES-P = American National Election Panel
Study (Knowledge Networks), CPS = Current Population Survey, ANES = American National Election Study), CPS and ANES are weighted.
Data from all columns other than “Our Sample” reproduced from Table 3 in Berinsky, Huber and Lenz (2012a)

Table 1 compares our (wave one) MTurk sample to that
of another MTurk sample, a high quality internet panel
study, the 2008-2009 American National Election Panel
Study (ANES-P) conducted by Knowledge Networks, and
two gold standard traditional surveys, the 2008 Current
Population Survey (CPS) and the 2008 ANES. Overall,
our sample appears to closely resemble the population with
a few expected deviations, especially age and education.
While not as representative as the field’s best national prob-
ability samples, it outperforms the typical convenience sam-
ples. Indeed, other than being a slightly younger sample, it
is comparable to the high quality ANES-P population.

Panel studies, however, introduce additional opportu-
nities to reduce the sample representativeness with every
wave. Panel attrition may be the result of participants
choosing to opt out of future surveys or difficulties faced
by the researcher in re-contacting them. In either case, if
those in particular demographic groups or with certain at-
titudes leave the panel, the reduction in sample size can
affect representativeness and pose a problem for inference.
Because it utilizes cloud computing, MTurk makes panel at-
trition less likely. For one, regardless of whether panelists
move—a typical problem for long-term panel studies—they

are still easy to contact through their MTurk accounts. In
addition, because we can screen for Turkers with a history of
carefully completed (but unrelated) projects, we can sample
those who are more likely to complete new tasks.

The numbers of successfully completed responses for the
four waves conducted in the weeks surrounding the ACA
decisions were 1242, 944 (76% of the successful completes
from the previous wave), 856 (91%), and 751 (88%). We
consider these numbers to be especially high given the tight
time windows we were working with. They are in line with
rates in other “carefully conducted” high quality surveys
(Bartels, 1999). Because we wanted to make sure all of our
responses in a respective wave had the same opportunities
to be exposed to relevant information, our surveys were only
in the field for a few days. In fact, our second wave, the one
with the largest attrition, was only in the field for 48 hours,
because we wanted to stop it prior to Supreme Court deci-
sion, the date of which was not known until moments before
the announcement. Four months after our initial four waves,
we were able to collect responses from 472 participants (63%
response rate).

While the number of responses and the speed with which
we were able to collect them are impressive in their own

30 The Political Methodologist, vol. 20, no.2

rights, the seemingly random attrition may be even more
important for statistical inference in a panel study. Fig-
ure 1 shows the evolution of our panel’s demographics. Par-
ticularly in the first four waves, collected in a one-month
period around the Supreme Court decision (highlighted as
the event in the figure), our panel demographics remained
stable as people fell out of the panel. While there were some
deviations in the fifth wave, collected four months later, our
data suggest that panel attrition was essentially more or
less equal across the categories of respondent traits, such as
race, gender, partisanship, and income. Interestingly, slight
trends are evident in age and education, with 18 and 19
year olds and those with some college education consistently
falling out slightly more often than the older and more edu-
cated, respectively. It is somewhat intuitive to expect that
across five months, the older and more educated would be
more reliable survey respondents. In all, however, we be-
lieve that the results of our study suggest that there is little
danger in the panel attrition in MTurk samples across the
typical demographics.

Leveraging the Cloud

Turkers respond to survey requests incredibly quickly, which
is especially valuable when conducting surveys intended to
explore how individuals respond to real events in an obser-
vational setting. Indeed, the pre-post event design has the
unique potential to capture any micro-level change in this
context, which is one of several typical reasons to collect
panel data (see Sharot, 1991). Moreover, because events
in the real world unfold quickly and often change with the
discovery of new information, related events or media cov-
erage, it is important that the panels surrounding the event
are tightly situated around it. MTurk makes it possible to
launch a survey and collect hundreds of responses within
hours. Even in latter waves of our panel, we registered
dozens of responses in the first several minutes of posting
the HIT. In our case, this allowed us to end waves in antici-
pation of the health care decision and start a new one right
after it was announced. While we did not need to, it also
would have allowed us to quickly go back into the field with
another wave if, for example, President Obama had made
a health care speech a few days after an adverse decision.
Thus, along with MTurk’s low cost and ease of use, the
low panel attrition and quick response times of the MTurk
sample provide unusual flexibility for researchers to quickly
adapt their research design to real world events. In our
study of the ACA decision, scheduled weekly panels would
have been much less efficient than panels quickly and easily
adaptable to the event’s uncertain timing. Our case is not
unique; for example, one who is interested in public opinion
in response to natural disasters could time surveys around
forecasts and collect data in tight windows as events unfold.

A related benefit of doing MTurk panel studies around

events is the ability to do what we are calling real-time sur-
vey experiments, in which one randomizes participants to
realistic treatments related to the event as they are simul-
taneously getting political information about it in their nat-
ural environments. Relative to conducting artificial exper-
iments with captive audiences, this approach dramatically
increases external validity and offers a unique opportunity to
combine experimental treatments with the unfolding events
in the real world, thereby reconciling some of the known
discrepancies in survey and experimental studies (Hovland,
1959). Indeed, there has been some noteworthy attention
to the implications of captive audiences in political science
(e.g., Arceneaux and Johnson, 2010; Gaines and Kuklinski,
2011; Gaines, Kuklinski and Quirk, 2007; Levendusky, 2011)
and even to realistic experiments of attitude change in the
longitudinal context (Druckman, Fein and Leeper, 2012).
However, outside of using an MTurk sample with an online
survey platform or a convenience sample, combining a large
N panel design around imprecisely timed real world events
with realistic experimental treatments would likely be too
costly and/or would require sacrificing external validity due
to its advanced planning demands.

Our approach using MTurk allows one to not only cap-
ture the micro-level change around the event, but also to
leverage any effects of the event with a related experiment.
That is, we might be interested in not only attitude change
as a result of an event, like the ACA decision, but also with
factors associated with the event that can be experimentally
manipulated, such as media frames. In our case, we took ad-
vantage of news reports that Chief Justice Roberts switched
sides for political reasons that broke within days of the deci-
sions. While a typical experiment might expose participants
to this story, and this story only, weeks or months after a
decision to investigate the effect of a story about politicians
in robes, MTurk enabled us to expose some participants to
it as it was unfolding and as they were also self-selecting
other news and information about the decisions. An exam-
ple of a similar application would be studying the effects
of media frames leading up to and/or after presidential de-
bates. MTurk would allow a researcher to easily conduct
a pre-wave and then expose participants to different media
frames in the days after the debate to estimate their effect
on people who are also exposed to other uncontrolled infor-
mation.

To be sure, our health care study is but one example of
using MTurk to conduct an inexpensive and flexible panel
study around a foreseeable political event. It enabled us
to ask dozens of questions of our choosing in each wave, to
adopt the timing of our surveys to events as they unfolded,
and to embed experiments by exposing participants to a
little-known yet important news story as it broke. Supreme
Court cases are but one potential application. As we men-
tioned above, whether one wants to collect pre-post data
around precisely scheduled events, like presidential debates

The Political Methodologist, vol. 20, no. 2 31

or the release of economic data, or those that can only be
forecast a few days in advance, like natural disasters or ma-
jor legislative votes, MTurk makes it easy to interact politi-
cal events with experimental treatments in real-time. It also

allows one to simply conduct a standard panel design at a
workable price. In all, MTurk makes sophisticated research
designs possible for those with constrained research budgets
and introduces little in the way of inferential bias.

References

Arceneaux, Kevin and Martin Johnson. 2010. “Does Me-
dia Fragmentation Produce Mass Polarization?” Temple
University. Unpublished paper.

Bartels, Larry M. 1999. “Panel Effects in the American Na-
tional Election Studies.” Political Analysis 8(1):1–20.

Berinsky, Adam J., Gregory A. Huber and Gabriel S. Lenz.
2012a. “Evaluating Online Labor Markets for Experi-
mental Research: Amazon.com’s Mechanical Turk.” Po-
litical Analysis 20(3):351–368.

Berinsky, Adam J., Gregory A. Huber and Gabriel S.
Lenz. 2012b. Mechanical Turk Instructions. Avail-
able at https://docs.google.com/document/pub?id=
1Bjqp0FSTmEG83S-vtbr0uFrdesq1OSC27Xbp_iCI8Eg.

Berinsky, Adam J., Gregory A. Huber and Gabriel S. Lenz.
2012c. Recontacting Mechanical Turk Workers. Avail-
able at http://docs.google.com/View?id=dd4dxgxf_
9g9jtdkfc.

Berinsky, Adam J., Michele. Margolis and Michael W.
Sances. 2012. “Separating the Shirkers from the Work-
ers? Making Sure Respondents Pay Attention on In-
ternet Surveys.” Presented at NYU CESS 5th Annual

Experimental Political Science Conference .

Christenson, Dino P. and David M. Glick. 2012. “Roberts’s
Health Care Decision Disrobed: The Microfoundations
of the Court’s Legitimacy.” Presented at the Meeting
of the Pacific Northwest Political Science Association,
November 8–10, 2012. Portland, OR.

Druckman, James N., Jordan Fein and Thomas J. Leeper.
2012. “A Source of Bias in Public Opinion Stability.”
American Political Science Review 106(2):430–54.

Gaines, Brian J and James H. Kuklinski. 2011. “Experi-
mental Estimation of Heterogeneous Treatment Effects
Related to Self Selection.” American Journal of Political
Science 55(3):724–736.

Gaines, Brian J., James H. Kuklinski and Paul J. Quirk.
2007. “The Logic of the Survey Experiment Reexam-
ined.” Political Analysis 15(1):1–20.

Hovland, Carl I. 1959. “Reconciling Conflicting Results De-
rived From Experimental and Survey Studies of Attitude
Change.” American Psychologist 14(1):8.

Levendusky, Matthew S. 2011. “Do Partisan Media Polar-
ize Voters.” University of Pennsylvania, Unpublished
Paper.

Sharot, Trevor. 1991. “Attrition and Rotation in Panel
Surveys.” The Statistician 40:325–331.

https://docs.google.com/document/pub?id=1Bjqp0FSTmEG83S-vtbr0uFrdesq1OSC27Xbp_iCI8Eg.
https://docs.google.com/document/pub?id=1Bjqp0FSTmEG83S-vtbr0uFrdesq1OSC27Xbp_iCI8Eg.
http://docs.google.com/View?id=dd4dxgxf_9g9jtdkfc.
http://docs.google.com/View?id=dd4dxgxf_9g9jtdkfc.

32 The Political Methodologist, vol. 20, no.2

Figure 1: Sample Demographics by Panel Wave

Event

0

25

50

75

100

1 2 3 4 5
Wave

Pe
rc

en
t Gender

Female

Male

Event

0

25

50

75

100

1 2 3 4 5
Wave

Pe
rc

en
t

Education

Eighth Grade

Some HS

HS Grad

Some College

College Grad

Event

0

25

50

75

100

1 2 3 4 5
Wave

Pe
rc

en
t

Age

Teens

Twenties

Thirties

Fourties

Fifties

Event

0

25

50

75

100

1 2 3 4 5
Wave

Pe
rc

en
t Income

Less than 49k

50k to 99k

More than 100k

Event

0

25

50

75

100

1 2 3 4 5
Wave

Pe
rc

en
t

Race

Asian

Black

Latino

White

Event

0

25

50

75

100

1 2 3 4 5
Wave

Pe
rc

en
t Party

Democrat

Independent

Republican

Event refers to the period between the second and third waves when the Supreme Court ACA decision was announced.

University of Illinois at Urbana-Champaign
Department of Political Science
420 David Kinley Hall
1407 W. Gregory Drive
Urbana, IL 61801

The Political Methodologist is the newsletter of the
Political Methodology Section of the American Polit-
ical Science Association. Copyright 2012, American
Political Science Association. All rights reserved.
The support of the Department of Political Science
at the University of Illinois in helping to defray the
editorial and production costs of the newsletter is
gratefully acknowledged.

Subscriptions to TPM are free for members of the
APSA’s Methodology Section. Please contact APSA
(202-483-2512) if you are interested in joining the
section. Dues are $25.00 per year and include a
free subscription to Political Analysis, the quarterly
journal of the section.

Submissions to TPM are always welcome. Articles
may be sent to any of the editors, by e-mail if possible.
Alternatively, submissions can be made on diskette
as plain ascii files sent to Wendy K. Tam Cho, 420
David Kinley Hall, 1407 W. Gregory Drive, Urbana,
IL 61801. LATEX format files are especially encour-
aged.

TPM was produced using LATEX.

President: Robert Franzese
University of Michigan
franzese@umich.edu

Vice President: Kevin Quinn
University of California at Berkeley, School of Law
kquinn@law.berkeley.edu

Treasurer: Luke Keele
Pennsylvania State University
ljk20@psu.edu

Member-at-Large: Betsy Sinclair
University of Chicago
betsy@uchicago.edu

Political Analysis Editors:
Michael Alvarez and Jonathan Katz
California Institute of Technology
rma@hss.caltech.edu and jkatz@caltech.edu

	Notes from the Editors
	Articles
	Thomas J. Leeper: Crowdsourcing with R and the MTurk API
	Christopher Gandrud: GitHub: A tool for social data set development and verification in the cloud
	John Beieler: A Tutorial on Deploying and Using Amazon Elastic Cloud Compute Clusters
	Taylor C. Boas and F. Daniel Hidalgo: Fielding Complex Online Surveys using rApache and Qualtrics
	Dino P. Christenson and David M. Glick: Crowdsourcing Panel Studies and Real-Time Experiments in MTurk

