
The Political Methodologist
Newsletter of the Political Methodology Section

American Political Science Association
Volume 14, Number 2, Fall 2006

Editors:
Adam J. Berinsky, Massachusetts Institute of Technology

berinsky@mit.edu

Michael C. Herron, Dartmouth College
Michael.C.Herron@dartmouth.edu

Jeffrey B. Lewis, University of California Los Angeles
jblewis@ucla.edu

Editorial Assistant:
Seth J. Hill, University of California Los Angeles

sjhill@ucla.edu

Contents

Notes from the Editors 1

Articles 2

David Firth and Arthur Spirling: tapiR and The
Public Whip: Resources for Westminster
Voting . 2

Computing and Software 5

David K.Park, Andrew Gelman, and Noah Ka-
plan: R2WinBUGS: Running WinBUGS from R . 5

Simon Jackman: Data from the Web into R 11

Book Reviews 16

Ryan T. Moore: Review of Essential Mathematics
for Political and Social Research, by Jeff Gill 16

Section Activities 18

A note from our Section President 18

Notes From the Editors

Welcome to the latest issue of The Political Methodologist,
and the last under our editorial regime. Beginning with the
next issue, TPM will be in the capable hands of Paul Kell-
stedt, Dave Peterson, and Guy Whitten at Texas A&M. We
hope that you have enjoyed the issues we have produced
over the last three years and we look forward to joining all
of you as consumers, rather than producers of TPM.

This issue begins with an article by David Firth and

Arthur Spirling on resources that make it possible to ana-
lyze voting data from the House of Commons at Westmin-
ster. We then move a pair of articles in our Computing
and Software section. The first, by David Park, Andrew
Gelman, and Noah Kaplan discusses how to run WINBUGS
through R. The second, by Simon Jackman draws attention
to R’s data processing capabilities by outlining procedures
for importing data from web pages into R. Ryan Moore then
reviews another title in the Analytical Methods for Social
Research series, published by Cambridge University Press,
Essential Mathematics for Political and Social Research, by
Jeff Gill. We close the issue with notes from our section
president, Janet Box-Steffensmeier and a message from the
new TPM editorial team.

The Editors

2 The Political Methodologist, vol. 14, no. 2

Articles

tapiR and The Public Whip: Resources for Westminster Voting

David Firth and Arthur Spirling
University of Warwick and University of Rochester
d.firth@warwick.ac.uk and spln@mail.rochester.edu

As no doubt most readers of TPM are aware, the
spatial analysis of legislatures has become a mainstay of
our discipline. With some important exceptions, almost all
this work has been based on Congressional roll call vot-
ing in the United States. This is unfortunate but under-
standable: unfortunate because there are other parliaments
in the world with potentially very interesting patterns to
be uncovered, but understandable because (a) data has not
been easily available in electronic or machine readable for-
mat for non-US parliaments and (b) the most technically
minded scholars in political science have historically been
Americanists. Here we intend to draw interested readers’
attentions to a set of new resources, partly contributed by
the current authors, that ameliorate the data availability
problem for the United Kingdom (from 1992 onwards) and
hence allow analysis of the House of Commons at Westmin-
ster. This is probably not the place to wax lyrical about
the joys of studying Britain’s House of Commons, suffice to
note that it is literally is the Westminster system that read-
ers may (hopefully!) recall from introductory Comparative
politics classes, and contrasts with the US Congress insofar
as it shows highly cohesive parties and a ‘fused’ legislature
and executive (Cabinet).

tapiR and error corrected votes
Parliamentary voting in the United Kingdom is

recorded in both hard and electronic copy in the volumes
of the official Hansard record. Unfortunately, the pages
of Hansard provide only individual division lists in textual
form and even the online Hansard webpages—available for
all House of Commons debates and votes since 1995—cannot
be used directly for analysis, as they contain inconsistencies
in the names used for Members of Parliament (MPs), extra-
neous markup codes etc.

The current authors provide two resources: data on
House of Commons voting for the period 1992 to 2005; and
software tools to enable future House of Commons divi-
sions to be added easily by accessing the relevant pages of
Hansard online and incorporating the votes of each MP into
a single rectangular dataset. As we explain in the next sec-

tion, the software has become somewhat redundant since,
in recent times, others have taken up the mantle of col-
lating and recording votes in essentially the same way, so
we only briefly discuss our package here. It was designed
for the R statistical computing environment and is named
tapiR which stands for tools for accessing parliamentary
information in R.1

Three separate datasets are provided for the 1992–
1997 parliament, the 1997–2001 parliament and the 2001–
2005 parliament. The data are in spreadsheet format, with
rows representing MPs and the columns representing divi-
sions. The first column after each name represents the MP’s
political party; in the few cases where the MP’s affiliation
changes during the period party membership at the end of
the parliament is recorded.

Table 1 illustrates the format of the data. Shown
in Table 1 are votes for the first ten MPs alphabetically,
in the first three divisions of the session which began after
the May 1997 General Election. Divisions are identified by
the Division Number as reported in Hansard, and the date
on which the division took place. Votes are either ‘y’ or
‘n’, signifying respectively Ayes and Noes as recorded in the
Hansard division lists (including the Tellers for each side).
A dash means that the MP did not vote, i.e., was in nei-
ther the Ayes nor the Noes. Note that it is not possible to
distinguish between different types of non-voting, the three
most important such being absence from the House, delib-
erate abstention when present, and ‘pairing’ in which MPs
on opposite sides of an issue agree that neither need vote as
their votes would cancel (although this disappeared as an
arrangement after 1997). Occasionally, Hansard records an
MP in both the Ayes and Noes lists for a division, and in
such instances we have used the code ‘b’ (for ‘both’); this
can happen either because the MP went through both the
Aye and the No lobbies, for example because of a change of
mind or the realization of a mistake on their part, or as the
result of an error in the published division lists. The origi-
nal hard copy records were rechecked manually for the latter
cases, and this typically resolved the issue (i.e. we were able
to ascribe y or n to the MP in question). In this sense the

1TPM readers should be aware of the conceptual distinction between the tapiR which is our software package and the tapir, which is a large
(300–600lbs) browsing forest-dwelling mammal, roughly pig-like in shape but with a short, prehensile trunk.

The Political Methodologist, vol. 14, no. 2 3

Table 1: A small part of the voting data from May, 1997

party div001.970519 div002.970520 div003.97052020
Abbott, Diane Lab n n n
Adams, Irene (Pai) Lab - n n
Ainger, Nick Lab n n n
Ainsworth, Peter (E S) Con y y -
Ainsworth, Robert (Cov) Lab n n n
Alexander, Douglas Lab - - -
Allan, Richard (She) LD - n y
Allen, Graham (Not) Lab n n n
Amess, David Con y y -
Ancram, Michael Con y y -
Anderson, Donald (Swa) Lab n n n

votes are ‘error corrected’ and ipso facto a more accurate
record than the online pages of Hansard themselves.

Each of these three datasets are made available as a
standard ‘comma-separated values’ (.csv) file of the kind
that can be read by many standard computer programs, in-
cluding Stata, SPSS and Excel. In Stata the data for 1997
to 2001, for example, can be read in by using the command

insheet using Votes9701.csv

and in R the same data can be read into a data-frame object
by

Votes9701 <- read.csv("Votes9701.csv",
row.names = 1)

where row.names=1 means that the first column of the file,
the MP names, will be used as row names in the resultant
data frame. The (zipped) data are held at Firth’s personal
website at the University of Warwick.2

The files are rather large: in 1992–97 there were
668 distinct MPs and 1285 divisions, and in 1997–2001
there were 671 MPs and 1279 divisions. Our experience
with Stata and R has been that this is unproblematic; but
with other software packages, especially those which impose
limits on the number of data columns, some external pre-
processing may be necessary, for example to select a subset
of the divisions for analysis. According to reports we have
received from users, the current version of Microsoft Excel
appears to have difficulty with data of this width.

All divisions up to the last vote of the 2001–2005 par-
liament are already recorded in the files described above.
The tapiR package is available on the Comprehensive R
Archive Network (CRAN) for straightforward installation
into the user’s local implementation of R. The package con-
tains R functions to perform data-handling tasks described
below.

The package is internally documented in R in the
usual way, and essentially converts one or more Hansard
division lists into columns of a spreadsheet. There are three
main tasks involved in this operation, and tapiR provides
functions to complete them:

1. Obtain a complete ‘master’ list of unambiguous MP
names for the parliamentary session. Some MPs share
the same name, and our approach to eliminating am-
biguity in such cases is to append the first three
characters of an MP’s constituency name; thus Pe-
ter Ainsworth’s constituency, which Hansard normally
records as ‘(E Surrey)’, becomes ‘(E S)’.

2. Download the relevant page(s) from the online
Hansard, extract the division-list information and
strip out redundant information such as hypertext
markup (HTML) codes.

3. For each MP name in each division list obtained, iden-
tify the MP in the ‘master’ list and record their vote
in the spreadsheet, or ‘-’ if no vote, as shown in Table
1.

Once a ‘votesheet’ object has been created for a set of divi-
sions, it can be operated upon in the standard ways for data
frames in R . In particular, the combination of votes for two
or more sets of divisions is easily achieved using R’s cbind
function. To make the voting data available for analysis in
other systems, a standard ‘comma-separated values’ (.csv)
file can be written by using the tapiR function write.csv;
for example,

> write.csv(Votes4Feb03, file = "Votes4Feb03.csv")

Obviously, this function will work for all R data frames, re-
gardless of whether they pertain to parliamentary voting
or not. One further tapiR function worth noting here is

2http://www.warwick.ac.uk/go/tapir/

http://www.warwick.ac.uk/go/tapir/

4 The Political Methodologist, vol. 14, no. 2

write.votesheet, which makes a compact representation
of the voting data either for on-screen display or in a file.
For example,

> write.votesheet(Votes4Feb03)
party votes

Abbott, Diane Lab -nyyy
Adams, Irene (Pai) Lab -ynnn
Ainger, Nick Lab nynnn
Ainsworth, Bob (Cov) Lab nynnn
Ainsworth, Peter (E S) Con -----
Alexander, Douglas Lab nnyyy
...

The codes ‘y’, ‘n’, etc., can be changed as desired. For ex-
ample, certain analytic computer programs commonly used
in the discipline—like NOMINATE (e.g. Poole & Rosenthal
(1997))—take as their input (1,6,0) in place of (y,n,-);
to write such a file, with code ‘b’ also replaced by ‘-’ wher-
ever it occurs, the usage of write.votesheet would be of
the form

> write.votesheet(Votes4Feb03,
file = "Votes4Feb03.txt", keep.b = FALSE,
aye = "1", no = "6", novote = "0")

The Public Whip
The Public Whip, currently located at http://www.

publicwhip.org.uk/ is a website that performs almost
identical tasks to tapiR and is continually updated with
new Westminster voting data as it occurs. Rather than R,
the authors of The Public Whip use Perl to capture divi-
sion data from XML files of parliamentary debates. This
information is then loaded into a MySQL database, where it
can be accessed directly from the website.

This arrangement allows users to search by date,
or by a particular bill, or by a particular MP for
division voting information. The website also con-
tains various links to MP’s constituency addresses, and
MP’s parliamentary speeches via an associated website,
http://www.TheyWorkForYou.com. There are various sum-
mary statistics available for each MP, such as their atten-
dance at votes and their ‘rebelliousness.’ This latter in-

formation comes with the important caveat that it is liter-
ally calculated as the proportion of times that the MP in
question votes against the majority position as voted for by
members of the MP’s party. Readers familiar with British
politics will know that this tends to overstate how often MPs
vote contrary to their party whip (which is the usual un-
derstanding of ‘rebel’), but this is (a) openly acknowledged
via The Public Whip’s frequently asked questions and (b)
somewhat unavoidable because British political parties do
not publicize which votes are whipped and which are ‘free.’

The data matrices for the 1997–2001 parlia-
ments and 2001–2005 parliaments are provided at
http://www.publicwhip.org.uk/project/data.php, also
in comma delimited format, but with slightly different nu-
merical coding. The columns and rows are switched relative
to tapiR ’s data, so that the rows contain the name, number
and date of the divisions, and the columns contain the MP
identifying number.

Conclusion
Above, we presented two resources for those inter-

ested in roll call voting and British politics. Our own efforts,
tapiR, and its associated data sets were generated via R,
and contain voting records from 1992–2005 for Westminster.
The Public Whip’s efforts are complete from 1997 through
2005 and beyond, in the sense that they are updating their
records continuously. Both resources are free to researchers,
and our work has some particular licence conditions pertain-
ing to due citation and non-commercial use that users are
requested and required to abide by. There is further infor-
mation on this topic at Firth’s website. Source code for both
projects is available under the GPL license. As suggested
above, we will not continue to update our data using tapiR,
since The Public Whip is essentially fulfilling our objectives,
though, of course, tapiR and our data remain available for
anyone interested in using them.

References

Poole, Keith T. and Howard Rosenthal. 1997. Congress:
A Political-Economic History of Roll Call Voting,
Oxford University Press: NY, NY.

http://www.publicwhip.org.uk/
http://www.publicwhip.org.uk/

The Political Methodologist, vol. 14, no. 2 5

Computing and Software

R2WinBUGS: Running WinBUGS from R

David K.Park, Andrew Gelman, and Noah Kaplan
George Washington University, Columbia University, and University of Houston
dkp@gwu.edu, gelman@stat.columbia.edu, and nkaplan@uh.edu

Introduction
Bayesian inference is the process of fitting a proba-

bility model to a set of data and summarizing the result by
a probability distribution on the parameters of the model
and on unobserved quantities such as predictions for new
observations. There are several options for researchers to
use Bayesian inference in R (2006).1 One such option is to
use the R package R2WinBUGS to call WinBUGS (1999) from
R.2 First, why use WinBUGS?

• Bugs is one of the most general programs currently
available for Bayesian inference.3

• Its model specification closely resembles the theoreti-
cal specifications of models. Therefore,

– Bugs is useful for teaching, since students can
easily follow the move from theoretical specifica-
tion of a model to computational specification for
estimation purposes; and

– Bugs facilitates the development and estimation
of models for which routines have not been writ-
ten: it’s a wonderful environment to work if there
is no canned routine for the problem of interest.

Why not just use WinBUGS directly? Why do we need
R2WinBUGS? There are several advantages to calling WinBUGS
from R:

• R2WinBUGS Automatically writes the data, gener-
ates initial values, lists the parameters to extract, calls
the model to be read by WinBUGS, and returns an ob-
ject with a convenient graphical and numerical sum-
mary.

• Saving the WinBUGS estimate as an R object makes it
easier to manage the posterior simulations for further
analysis and to combine with the data stored in R that
were used to fit the model.

Example: Dialogue in American Political Cam-
paigns

In this note, we use an example, understanding di-
alogue between competing political candidates, to demon-
strate the usefulness of R2WinBUGS. Consider the goal of es-
timating the distribution of dialogue, yi, across campaigns
and issues, i. For example, the level of dialogue between
two competing candidates on an issue like abortion in the
2002 Alabama Senate campaign. We have indicators for the
different campaigns, j, for example, the 2002 Senate cam-
paign in Alabama, and the different issues, k, for example,
abortion. We have important campaign-level predictors —
the competitiveness of the campaign, cqj , and the level of
negativity, negativej ; and important predictors as the is-
sue level — if the issue is “owned” by a particular party,
ownershipk, and the salience of the issue, saliencek.4

We also have several error terms that we need to con-
sider. First, the errors εi represent “within campaign-issue
variation” which in this case includes measurement error
and variation between campaign-issues. Second, the errors
ηj represent variation between campaigns, beyond what is
explained by campaign-level predictors. Finally, the error
νk represent the variation between issues, beyond what is
explained by issue-level predictors.

Writing a WinBUGS model
We formally write the model as:

yi = α0 + λj[i] + βk[i] + εi for campaign-issue i = 1, . . . , n

λj = γ1 · cqj +γ2 ·negativej +ηj for campaigns j = 1, . . . , J

βk = δ1·ownershipk+δ2·saliencek+νk for issues k = 1, . . . ,K

1For a comprehensive list of R packages that provide tools for Bayesian inference see the CRAN Task View: Bayesian Inference at http:

//cran.r-project.org/src/contrib/Views/Bayesian.html.
2R2WinBUGS works with OpenBUGS which is an open-source version of WinBUGS.
3Various R packages exist that fit particular Bayesian models, e.g., MCMCPack.
4This is a simplified version of the model presented in Kaplan, Park and Ridout (2006).

http://cran.r-project.org/src/contrib/Views/Bayesian.html
http://cran.r-project.org/src/contrib/Views/Bayesian.html

6 The Political Methodologist, vol. 14, no. 2

where j[i] represents the campaign j containing campaign-
issue i, and k[i] represents the issue k containing campaign-
issue i.

Now that we have formally written down the model,
we need to translate that model to WinBUGS notation. We
can simply write down the WinBUGS model in a text editor,
such as Emacs or WinEdt.
Campaign-issue level model
Before we do that, however, rewrite () as:

yi ∼ N(α0 + λj[i] + βk[i], σ
2
y)

First, WinBUGS does not allow composite expres-
sions in its distribution specifications, thus we cannot
write y[i] ∼ dnorm(alpha.0 + lambda[campaign[i]]
+ beta[issue[i]], tau.y) because the first argument
to dnorm is too complex. So, we split () into two lines:

yi ∼ N(ŷi, σ
2
y)

ŷi = α0 + λj[i] + βk[i]

The campaign-issue level model can be written in
WinBUGS as follows:

model {
for (i in 1:n){
y[i] ~ dnorm (y.hat[i], tau.y)
y.hat[i] <- alpha.0 +

lambda[campaign[i]] +
beta[issue[i]]

}

Second, we use the variable names campaign[i] and
issue[i] for the indexes which we have labeled as j[i] and
k[i] in the mathematical formulation of the model. This
makes it easier to interpret the indexes as constructed and
stored in R, and frees up the variables j and k to use as loop
counters in the Bugs model. Finally WinBUGS parameter-
izes normal distributions in terms of the inverse-variance,
τy = 1/σ2

y, a point to which we shall return shortly.

Campaign-level model
The next step is to model the campaign-level parameters.
For our example, these are the campaign-level intercepts λj .
Again, before we translate the formal notation to WinBUGS
notation we rewrite () as:

λj ∼ N(µλ, σ2
λ)

µλ = γ1 · cqj + γ2 · negativej

This is expressed almost identically in WinBUGS:

for (j in 1:J){

lambda[j] ~ dnorm(mu.lambda[j], tau.lambda)
mu.lambda[j] <- gamma.1*cq[j] +

gamma.2*negative[j]
}

Again, the only difference from the preceding statistical for-
mula is the use of the inverse-variance parameter τλ = 1/σ2

λ.

Issue-level model
We also need to model the issue-level parameters. For our
example, these are the issue-level intercepts βk. Again, be-
fore we translate the formal notation to WinBUGS notation,
we rewrite () as:

βk ∼ N(µβ , σ2
β)

µβ = δ1 · ownershipk + δ2 · saliencek

Again, this is expressed almost identically in
WinBUGS:

for (k in 1:K){
beta[k] ~ dnorm(mu.beta[k], tau.beta)
mu.beta[k] <- delta.1*ownership[k] +

delta.2*salience[k]
}

Again, the only difference from the preceding statistical for-
mula is the use of the inverse-variance parameter τβ = 1/σ2

β .

Prior distributions
Every parameter in a WinBUGS model must be given ei-
ther an assignment (as is done for the temporary param-
eter y.hat[i] defined within the data model) or a distri-
bution. The parameters lambda[j] were given a distri-
bution as part of the campaign-level model, but this still
leaves alpha.0 and tau.y from the campaign-issue model
and gamma.1, gamma.2 and tau.lambda from the campaign-
level, and delta.1, delta.2 and tau.beta from the issue-
level model to be defined.

The specification for these parameters are called
prior distributions because they must be specified before
the model is fit to the data. In the dialogue example, we
follow the common practice and use noninformative prior
distributions:

alpha.0 ~ dnorm(0, .0001)
gamma.1 ~ dnorm(0, .0001)
gamma.2 ~ dnorm(0, .0001)
delta.1 ~ dnorm(0, .0001)
delta.2 ~ dnorm(0, .0001)

The regression coefficients γ’s and δ’s are each given
normal prior distributions with mean 0 and standard devia-
tion 100 (thus, they each have an inverse-variance 1/1002 =

The Political Methodologist, vol. 14, no. 2 7

10−4). This states, roughly, that we expect these coeffi-
cients to be in the range (−100, 100), and if the estimates
are in this range, the prior distribution is providing very
little information in the inference.5

We now define the inverse-variances, τy, τλ, and τβ

in terms of the standard deviation parameters, σy, σλ, and
σβ , which are each given uniform distributions on the range
(0, 100).

tau.y <- pow(sigma.y, -2)
sigma.y ~ dunif(0, 100)
tau.lambda <- pow(sigma.lambda, -2)
sigma.lambda ~ dunif(0, 100)
tau.beta <- pow(sigma.beta, -2)
sigma.beta ~ dunif(0, 100)

Therefore, the full WinBUGS model is written as:

model {
for (i in 1:n){
y[i] ~ dnorm (y.hat[i], tau.y)
y.hat[i] <- alpha.0 +

lambda[campaign[i]] +
beta[issue[i]]

}
for (j in 1:J){
lambda[j] ~ dnorm(mu.lambda[j], tau.lambda)
mu.lambda[j] <- gamma.1*cq[j] +

gamma.2*negative[j]
}
for (k in 1:K){
beta[k] ~ dnorm(mu.beta[k], tau.beta)
mu.beta[k] <- delta.1*ownership[k] +

delta.2*salience[k]
}
alpha.0 ~ dnorm(0, .0001)
gamma.1 ~ dnorm(0, .0001)
gamma.2 ~ dnorm(0, .0001)
delta.1 ~ dnorm(0, .0001)
delta.2 ~ dnorm(0, .0001)
tau.y <- pow(sigma.y, -2)
sigma.y ~ dunif(0, 100)
tau.lambda <- pow(sigma.lambda, -2)
sigma.lambda ~ dunif(0, 100)
tau.beta <- pow(sigma.beta, -2)
sigma.beta ~ dunif(0, 100)

}

We can now save the model as dialogue.bug. For conve-
nience, save the .bug file in the same directory as the data,
for example, "C:/Research/Dialogue".

Calling WinBUGS from R

We load the R2WinBUGS package in R by typing the
following:6

library("R2WinBUGS")

(Actually, we include this and several other library
calls in our Rprofile.site file in the directory
c:\Program Files\R\R-2.4.0\etc\ so that these are
called automatically when R is started up.) Now that the
R environment has been set up to call WinBUGS, we execute
the following R code to set up the data, initial values, and
parameters to save for the WinBUGS run:

dialogue.data <- list ("n", "J", "K", "y",
"campaign", "issue",
"cq","negative",
"ownership", "salience")

dialogue.inits <- function (){
list (alpha.0=rnorm(1), lambda=rnorm(J),

beta=rnorm(K), gamma.1=rnorm(1),
gamma.2=rnorm(1), delta.1=rnorm(1),
delta.2=rnorm(1), sigma.y=runif(1),
sigma.lambda=runif(1),
sigma.beta=runif(1))}

dialogue.parameters <- c ("alpha.0", "lambda",
"beta", "gamma.1", "gamma.2",
"delta.1", "delta.2", "sigma.y",
"sigma.lambda", "sigma.beta")

dialogue <- bugs (dialogue.data,
dialogue.inits,
dialogue.parameters,
"dialogue.bug", n.chains=3,
n.iter=500, debug=TRUE)

The first argument to the bugs() function:

dialogue.data <- list ("n", "J", "K", "y",
"campaign", "issue",
"cq", "negative",
"ownership", "salience")

lists the data—including the outcome y, campaign and is-
sue indicators, campaign and issue, respectively, and pre-
dictors at the campaign-level cq and negative and at the
issue-level ownership and salience, and the indexing pa-
rameters n, J, and K—that are written to a file to be read
by WinBUGS.7

The second argument to the bugs() function:
5See Gelman and Hill, 2006, pp. 355-356 for a more detailed discussion on noninformative prior distributions.
6We recommend saving the call functions to WinBUGS in a text editor and saving the file as dialogue.R.
7We are assuming that the data has been formatted and is currently loaded in R.

8 The Political Methodologist, vol. 14, no. 2

dialogue.inits <- function (){
list (alpha.0=rnorm(1), lambda=rnorm(J),

beta=rnorm(K), gamma.1=rnorm(1),
gamma.2=rnorm(1), delta.1=rnorm(1),
delta.2=rnorm(1), sigma.y=runif(1),
sigma.lambda=runif(1),
sigma.beta=runif(1))}

returns a list of the starting values for the algorithm.
Within the list are random-number generators, for exam-
ple, rnorm(J) is a vector of length J of random numbers
from the N(0, 1) distribution, and these random numbers
are assigned to λ to start the WinBUGS iterations. In this
example, we follow our usual practice and assign random
numbers from normal distributions for all the parameters -
except those constrained to be positive (here, σy, σλ, and
σβ) to which we assign uniformly distributed random num-
bers (which, by default in R, fall in the range [0,1]).

The third argument to the bugs() function:

dialogue.parameters <- c ("alpha.0", "lambda",
"beta", "gamma.1", "gamma.2", "delta.1",
"delta.2", "sigma.y", "sigma.lambda",
"sigma.beta")

is a vector of the names of the parameters that we want
to save from the WinBUGS run. For example, the vector λj

parameters is represented by "lambda".
The last argument to the bugs() function:

dialogue <- bugs (dialogue.data,
dialogue.inits,
dialogue.parameters,
"dialogue.bug", n.chains=3,
n.iter=500, debug=TRUE)

takes the data (the variables listed in "dialogue.data")
and starting values (as constructed from the function
"dialogue.inits") and automatically writes a WinBUGS
script, calls the model, "dialogue.bug" and saves the pa-
rameters named in the vector "dialogue.parameters" as
an R object called "dialogue". The object includes all the
simulations for easy access in R.

Number of sequences and number of iterations
WinBUGS uses an iterative algorithm that runs several
Markov chains in parallel, each starting with some list of ini-
tial values and endlessly wandering through a distribution
of parameter estimates. We would like to run the algorithm
until the simulations from separate initial values converge
to a common distribution. Specifying initial values using

random distributions ensures that different chains start at
different points.

We assess convergence by checking whether the dis-
tributions of the different simulated chains mix; we thus
need to simulate at least 2 chains. We also need to run the
simulations “long enough,” although it is generally difficult
to know ahead of time how long is necessary. The bugs()
function is set up to run for n.iter iterations and discard
the first half of each chain (to lose the influence of the start-
ing values). Thus in the example presented here, WinBUGS
ran n.chains=3 sequences, each for n.iter=500 iterations,
with the first 250 from each sequence discarded.8

Summary and convergence
From a WinBUGS run, you will see means, standard devia-
tions, and quantiles for all the parameters that were saved.
You also get, for each parameter, a convergence statistic, R̂,
and an effective number of independent simulation draws,
neff . We typically monitor convergence using R̂, which is
call the potential scale reduction factor, for each parameter,
the possible reduction in the width of its confidence interval,
were the simulations to be run forever. Our usual practice
is to run simulations until R̂ is no greater than 1.1 for all
parameters.

We can look at the output in the WinBUGS window
because debug was set to TRUE. In other words, setting
debug=TRUE keeps the WinBUGS program open so you can
directly view the log file to see a list of possible error mes-
sages. We recommend keeping debug=TRUE until there are
no more errors messages, and then setting debug=FALSE.9

When we close the WinBUGS window, R resumes and we have
the option of displaying the inferences in either graphical or
text form. To view the results in graphical form, in the R
window, we can type

plot(dialogue)

and inferences for the vectors lambda and beta and
scalars gamma.1, gamma.2, delta.1, delta.2, sigma.y,
sigma.lambda, and sigma.beta (the parameters included
in the dialogue.parameters vector that was passed to
WinBUGS) are displayed in a graphics window.

To view the results in text form, in the R window, we
can type

print(dialogue)

Accessing the simulations
We can use the simulations for prediction and uncertainty
intervals for any functions of parameters as with the prop-
agation of error in classical regressions. To access the sim-
ulations, we must first attach them in R. In our example,

8See Gelman and Hill, 2006, pp. 357 for general advice on how long to run the simulations.
9When R calls WinBUGS, debug=FALSE will automatically close the WinBUGS window and resume R.

The Political Methodologist, vol. 14, no. 2 9

we saved the bugs output into the R object dialogue, and
we can load in the relevant information with the command,

attach.bugs (dialogue)

Each variable that was saved in the bugs computa-
tion now lives as an R object, with its 750 simulations (3
chains x 500 chains x last half of the iterations are saved =
750). Each of the scalar parameters, α0, γ1, γ2, δ1, δ2, σy, σλ,
and σβ is represented by a vector of length 750, and the vec-
tor parameter λ is saved as a 750 x J matrix and β a 750 x
K matrix.

We can access the parameters directly. For example,
a 90% interval for γ1 would be computed by,

quantile (gamma.1, c(0.05, 0.95))

We can also calculate fitted values, residuals and other cal-
culations as well. If you would like to run the following
model, you can download the R file, WinBUGS model, as well
as the data from http://home.gwu.edu/~dkp/tpm.htm.

We have only highlighted a few of the options avail-
able in R2WinBUGS. For additional examples, as well as more
detail on the various options in R2WinBUGS, see Sturtz,
Ligges and Gelman (2005) “R2WinBUGS: A Package for Run-
ning WinBUGS from R” and Gelman and Hill (2006) Data
Analysis Using Regression and Multilevel/Hierarchical Mod-
els.

Limitations of Bugs/WinBugs/OpenBugs
Bugs, as run from R, is a great first try for fitting a

Bayesian model, and if it works, great. The great advan-
tage of Bugs is that it has no problem with nonlinear models
and nonstandard parameterizations. Generally, if you can
write the model, Bugs can fit it. But Bugs can be slow, and
potentially chokes, on large datasets or datasets with many
parameters.

Bugs also can have problems with relatively simple
linear or generalized linear models when the predictors are
highly correlated. In these settings, we can have more suc-
cess with R functions such as lmer and MCMCpack which are
“hard-wired” for particular model specifications. A general
difficulty with using Bugs is that its code is not easily acces-
sible; thus there is no simple way, for example, to use lmer
as a way to guide the Bugs computations. (One option is
to use estimates from lmer as a starting point for Bugs, but
this will not solve the problem of Bugs being slow with large
datasets or with correlated predictors.)

Another awkwardness with Bugs is in writing the
models: consider, for example, the two lines needed to repa-
rameterize a variance parameter and set up its prior distri-
bution. Ideally, it should be possible to write a macro or
function (as in R) which would incorporate the transforma-
tion and prior distribution and remove the need for these

lines in the program. Similarly, it should be possible to
set default prior distributions (for example, N(0, 102) for
regression coefficients and U(0, 100) for variance parame-
ters). For small models, this is not such an issue, but for
complicated models with varying slopes and intercepts, and
redundant additive and multiplicative parameters (see Gel-
man and Hill, Sections 19.4–19.6), the “paperwork” required
from all the reparameterizations and prior distributions can
be so long as to result in Bugs model code that is dozens of
lines long, obscuring the underlying statistical model. This
can be seen even in the simple model we have presented
here.

A related difficulty is the requirement of specifying
details in the R code. For example, if data or a prior distri-
bution is specified for a parameter that is not in the model,
Bugs will crash. This might seem to be a reasonable pre-
caution, but when building models it can be helpful to add
and remove parameters, in which case it should be allowable
to simply feed in all the data and parameters, and let the
program figure out what is needed.

It is probably ungracious of us to complain about
imperfections in free software. We anticipate, however, that
in future years Bugs will be improved to allow more struc-
tured computation (for example, parallel vector updating of
batches of parameters in a hierarchical model) and will ulti-
mately achieve convergence with more specialized packages
such as MCMCpack.

References

Gelman, Andrew and Jennifer Hill. 2006. Data Analysis
Using Regression and Multilevel/ Hierarchical
Models. Cambridge University Press.

Kaplan, Noah, David K. Park and Travis Ridout. 2006.
“Dialogue in American Political Campaigns? An
Examination of Issue Convergence in Candidate
Television Advertising.” American Journal of
Political Science 50(3):724736.

R Development Core Team. 2006. R: A Language and
Environment for Statistical Computing. Vienna,
Austria: R Foundation for Statistical Computing.
ISBN 3-900051-07-0. URL:
http://www.R-project.org

Spiegelhalter, D.J., A. Thomas and N.G. Best. 1999.
WinBugs Version 1.4. Cambridge, UK: MRC
Biostatistics Unit.

Sturtz, Sibylle, Uwe Ligges and Andrew Gelman. 2005.
“R2WinBUGS: A Package for Running WinBUGS.”
Journal of Statistical Software 12(3):117.

http://home.gwu.edu/~dkp/tpm.htm

10 The Political Methodologist, vol. 14, no. 2

Figure 1: Summary output from example program

Inference for Bugs model at "dialogue.bug", fit using winbugs
3 chains, each with 500 iterations (first 250 discarded)
n.sims = 750 iterations saved

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
alpha.0 6.0 3.8 -2.8 3.7 6.3 8.5 12.5 1.1 37
lambda[1] 0.8 5.5 -9.9 -2.8 1.0 4.3 11.0 1.0 750
lambda[2] 27.0 5.7 16.7 23.0 26.9 30.7 38.8 1.0 300
.
.
.
lambda[64] -3.2 5.5 -13.4 -6.8 -3.2 0.6 7.2 1.0 750
lambda[65] 25.4 6.3 13.8 21.0 25.4 29.5 39.0 1.0 750
beta[1] 13.8 5.2 4.3 10.1 13.7 17.3 24.1 1.0 140
beta[2] 42.8 5.2 32.9 39.1 42.7 46.2 53.4 1.0 76
.
.
.
beta[42] 9.8 7.8 -5.2 4.5 9.9 15.1 24.7 1.0 98
beta[43] -1.5 13.7 -26.1 -10.5 -2.4 6.7 27.0 1.0 190
gamma.1 7.4 1.4 4.4 6.5 7.5 8.3 10.0 1.0 600
gamma.2 0.0 0.1 -0.2 -0.1 0.0 0.0 0.2 1.0 160
delta.1 -6.7 4.9 -15.7 -10.0 -6.8 -3.6 3.8 1.1 66
delta.2 0.3 0.5 -0.6 0.0 0.3 0.7 1.4 1.0 160
sigma.y 29.9 0.8 28.5 29.4 30.0 30.4 31.5 1.0 200
sigma.lambda 7.3 1.7 4.0 6.2 7.3 8.4 10.7 1.1 23
sigma.beta 14.5 2.1 10.9 13.0 14.3 15.6 19.2 1.0 210
deviance 9462.1 17.2 9431.0 9450.0 9461.0 9472.0 9500.3 1.1 47

For each parameter, n.eff is a crude measure of effective sample
size, and Rhat is the potential scale reduction factor (at
convergence, Rhat=1).

pD = 63.7 and DIC = 9525.8 (using the rule, pD = Dbar-Dhat) DIC is
an estimate of expected predictive error (lower deviance is better).

The Political Methodologist, vol. 14, no. 2 11

Data from the Web into R

Simon Jackman
Stanford University
jackman@stanford.edu

More data exists in machine-readable form than ever
before, scattered across millions of web pages. As many of
TPM ’s readers will know, a frequently encountered problem
is how to get that data from web pages into a form suitable
for statistical analysis. I am sure that across the profession
the standard tool for this research task remains RAs, key-
punching the contents of web pages into Excel spreadsheets
and the like: a slow, expensive, and error-prone process.
But as many political methodologists know, there is a bet-
ter way.

In this short note I draw attention to R’s data pro-
cessing capabilities, and in particular, R’s “Perl-like” abili-
ties for parsing text. Perl, of course, is a free, open source,
programming language that is widely used to support web-
based applications, largely because of its text manipulation
abilities. The application I present below showcases R’s abil-
ities in solving what I think is a fairly common problem:
getting quantitative data reported on a web site into one’s
statistical package and ready for analysis. In so doing I
will make use of some very useful functions in R for manip-
ulating text: these include grep, regexpr, sub, and some
variants. The discussion below presumes a working famil-
iarity with R: R is freely available via the Comprehensive R
Archive Network, with mirror sites all over the world (e.g.,
http://lib.stat.cmu.edu/R/CRAN), and there are numer-
ous book length introductions to R.1

At the outset, I want to stress that there is nothing
particularly path breaking about “automating” the process
of data acquisition. Many political methodologists are ap-
parently using Perl and/or Python as a matter of course
(witness the recent debate about text-processing in Stata
on the political methodology e-mail list), and in ways far
more sophisticated than what I will sketch below. For ex-
ample, Jeff Lewis, Mike Herron, Phil Schrodt, Wendy Tam
Cho, and Jonathan Wand are just some of the scripting gu-
rus in our ranks who I know to have done some very nimble
work acquiring data from web sites. Likewise, the massive
Colaresi/Crespin/Monroe/Quinn/Radev et al. project on
legislative speech surely has a tremendous amount of script-
ing to download and process data. And other approaches are
possible: e.g., Mike Herron’s piece on using XEmacs macros
to process text in V13(2) of TPM. Moreover, a function like
grep in R provide similar functionality as the grep com-
mand line utility that started life as part of Unix. Thus,
my goal here is surely not to announce a “new” methodol-

ogy to the profession. Rather, I simply want to underline
that using computer programs to parse web pages and to
generate data sets is not at all difficult (and indeed, can
be done using the same computer program used for data
analysis), dramatically increasing the pace of research.

The Application. After the 2006 midterm elections, I
wanted to analyze the results across California’s 53 congres-
sional districts. The Secretary of State’s website presents
these data, with frequent updates in the days and weeks
after the election, as absentee and provisional ballots are
counted. Asking an RA to enter the data manually seems
a waste (quite aside from the risk of keypunch error etc.),
since the data must be considered “volatile” at least until
the final certification of results. Another easily implemented
approach is to write a Perl script to parse the HTML con-
taining the election returns, writing the returns to a file that
can then be read into a statistics package. Alternatively, one
might skip the Perl “middle man”, parse the HTML in R
directly, and have the data saved in R itself. Since R’s text
processing functions are very Perl-like, my experience is
that the R programs I write to strip data from web sites are
not much longer than the equivalent Perl scripts.

Implementation in R. The first step is to pull in the
data from the Secretary of State’s web site. In this case,
all the relevant data appears on one page, and the process
of connecting to the site and reading the HTML into R is
simple:

url <-(

"http://vote.ss.ca.gov/Returns/usrep/all.htm")

ssData <- readLines(url)

The object ssData is simply a collection of character strings,
one for each line in the .htm file. When reading multiple
web pages — say, if each district’s data was on a separate
web page — I take care to sequentially open and close each
a separate connection to each page; see help(connection)
in R.

The web page is organized district by district, and
we will exploit this feature of the layout. Figure 1 shows
the displayed results for District 1; our job is to take the
HTML that generated that web page and strip out the data
into a form amenable for statistical analysis, which we will
do using R’s functions for manipulating character strings to
extract the data for each district.

1e.g., P. Dalgaard (2002), Introductory Statistics with R, Springer: New York; J. Verzani (2005), Using R for Introductory Statistics, Chapman
and Hall/CRC: Boca Raton.

http://lib.stat.cmu.edu/R/CRAN

12 The Political Methodologist, vol. 14, no. 2

Figure 1: Screenshot from California Secretary of State’s
website, showing results for District 1, as of Monday,

November 20, 2006.

Looking through the data recovered from the site, we
see that the string “District x ” marks the start of
the information for district x, where x takes on the integer
values 1, . . . , 53. We make a pass over the character data in
ssData, finding the start of district’s data:

nDistricts <- 53

districtNames <- paste("District ",

1:nDistricts,

" ",sep="")

districtLocs <- rep(NA,nDistricts)

for(i in 1:nDistricts){

districtLocs[i] <- (

grep(districtNames[i],ssData))

}

districtLocs <- c(districtLocs,length(ssData))

The grep function looks for its first argument in its
second argument, returning the indices of the second ar-
gument in which the first argument appears. Thus, the R
object districtLocs is a vector of length 54, with the first
53 entries indexing the start of each district’s entry in the
web page and the last entry simply indexing the last line
of the web page. That is, lines districtLocs[i] through
districtLocs[i+1] of ssData hold the data for district i.
For instance, the HTML that generated the results for CA-1
(Figure 1) starts on line 85 and runs to line 95, with lines
86 (containing the first appearance of the string “District
1 ”) through 90 appearing as follows:

<tr class=DistrictBarRow>

<td class=topbar>District 1 </td></tr>

</table> <table class=content>

<tr class=spacerRow><td colspan=10

class=maplink> </td></tr>

<tr class=contentHeader><td

colspan=2>Candidate</td> <td>Votes</td>

<tdcolspan=2>Percent</td></tr>

<tr class=candRow><td

class=candInc>* </td><td class=candName>Mike Thompson

(Dem)</td><td class=candVotes>111,650</td>

<td class=candPct>66.1 %</td><td class=voteBar>

<img src="/images/pix990033.gif" alt=""

hspace=0 height=11 width=66>

<img src="/images/pixEEEEEE.gif" alt=""

hspace=0 height=11 width=34>

</td></tr>

Note that the layout above does not exactly corre-
spond to the layout of the raw HTML. For instance, line

90, containing the information for the Democratic incum-
bent (and victor) in CA-1, Mike Thompson, is actually one
long combination of the seven lines used to display it above.
But the good news is that the Secretary of State’s office is
using good web design standards, “tagging” each piece of in-
formation in the HTML file. For instance, the table entries
(both entire rows and individual cells) are being tagged with
class identifiers; e.g., class=candRow, class=candName,
class=candVotes, and so on. These class identifiers are
there to ensure standardization in the formatting and on-
screen look of the results via a CSS (cascading style sheet)2,
but because they have been used throughout the web page
they will help us parse the results. That is, if we can extract
the data from the appropriate enclosing tag, we’re pretty
much done. And here is where R’s text manipulation func-
tions will come into play. For the sake of argument, lets take
line 90 (above) as a test case and refer to it as the R char-
acter string text. In order of appearance, the information
we’ll extract is

1. the fact that the candidate is an incumbent; note
the asterisk appearing immediately after the <td
class=candInc> tag

2. the candidate’s name, appearing immediately after the
<td class=candName> tag

3. the candidate’s party, appearing in parentheses imme-
diately the candidate’s name

4. the candidate’s vote total, appearing immediately af-
ter the <td class=candVotes tag

Regular Expressions. Most computing languages sup-
port regular expressions, which are character strings that
describe, match, and parse other character strings, and
are almost a programming language in themselves. The
widespread popularity of Perl is in no small measure due
to its efficient implementation of regular expressions. The
core character manipulation functions in R also use regular
expressions, as we will now.

Suppose we have a string like line 90, and we want
to extract the contents of the candName tag. We can do this
via a call to the sub function in R, which accepts regular
expressions. The R command

sub(x=text,
pattern=".*class=candName>(.*\\))<.*",
replacement="\\1")

takes text as input, and processes it using the regular ex-
pression given in pattern. The regular expression shown
above says to match everything in text up through and
including the string class=candName>, but to designate ev-
erything that then appears up until and including a right

2See http://www.w3.org/Style/CSS/

http://www.w3.org/Style/CSS/

The Political Methodologist, vol. 14, no. 2 13

parenthesis (followed by a < and then the rest of the string),
as a variable called \1.

A detailed discussion of how regular expressions work
is beyond my scope here,3 but in this example we see that

• the meta-character “.” means “match anything” and
the asterisk means match any number of times (in-
cluding zero times).

• the outer set of enclosing parentheses designate a sub-
set of the regular expression that we can refer to later
with the variable names \1, \2, etc (this variable nam-
ing convention is a feature of regular expressions, not
R, and can’t be controlled by the user). In this case
we have only one such variable for “back-referencing.”

• The right parenthesis is a meta-character, and so when
we want to match against it we need to “escape it” by
preceding it with the backslash. But when quoting
backslashes in R (and many other programming en-
vironments) we need a double backslash, which can
be a little confusing at first. Likewise, we need to
quote the variable \1 back to the sub function in
the replacement argument, and so we need a dou-
ble backslash there as well.

What the sub function is doing here is to (a) match
all of the string called text; but to (b) refer to a key subset
of text as \1; and then (c) replace the matched text (i.e.,
all of text) with the contents of \1. In the case of line
90, applying the call to sub() as given above produces the
output:

[1] "Mike Thompson (Dem)"

We’ll wrap this command up in a function:

getName <- function(text){

sub(x=text,

pattern=".*class=candName>(.*\\))<.*",

replacement="\\1")

}

We’ll also define two more functions: one to extract the
actual name from a string with both name and party infor-
mation, and another to extract the party affiliation:

partyFromName <- function(name){

sub(x=name,

pattern=".*\\((.*)\\)$",

replacement="\\1")

}

getOnlyName <- function(name){

sub(x=name,

pattern=" \\(.*\\)$",

replacement="")

}

The latter function finds the space after the candidate’s
name and the party affiliation in parentheses and clobbers
both (replacement=""), while the former function looks for
something in parentheses where the right parenthesis ter-
minates the enclosing string (the dollar sign $ is how we
denotes the end of string in a regular expression).

We define a similar function for extracting vote to-
tals:

getVotes <- function(text){

voteString <- sub(x=text,

pattern=".*class=candVotes>([0-9]{0,3}[,]{0,1}[0-9]{1,3})<.*",

replacement="\\1")

votes <- gsub(x=voteString,pattern=",",

replacement="")

as.numeric(votes)

}

The regular expression [0-9]{0,3}[,]{0,1}[0-9]{1,3}
matches a string that starts with as few as zero or as many
as three digits, followed by zero or one commas, followed by
at least 1 but no more than 3 digits, and so covers the range
of numbers between 1 and 999,999, a range which encom-
passes for the vote totals in California congressional races.
Also note the use of gsub rather than sub, which clobbers
all appearances of pattern, rather than just the first; we’ll
never have more than one comma in a voteString, but we
could use this gsub to process a voteString of the form
1,234,567 with multiple commas, if we ever had to deal
with vote totals that large.

Finally, we also define a very simple function to
search for the asterisk designating a particular candidate
as an incumbent:

getInc <- function(text){

regexpr(pattern="class=candInc>*",text) != -1

}

This function exploits the fact that the function regexpr
returns -1 if pattern can’t be found in the target string.
Thus, this function returns a logical TRUE for incumbents,
and otherwise FALSE; n.b., in open seats, this function re-
turns FALSE for all candidates.

With these functions defined, we loop over the Cali-
fornia congressional districts, applying the functions to the
lines of HTML found to contain the candidate-specific in-
formation we’re looking to keep from each district. There is
also a little bit of extra work to store the output and to ag-
gregate the results for minor parties and independents into
an “Other” category.

initialize output to be all missing

we write into this object below

cvote <- data.frame(matrix(NA,nDistricts,6))

names(cvote) <- c("D","R","Other",

3There are many excellent on-line references, or see Jeffrey E. F. Friedl’s 1997 book, Mastering Regular Expressions, (O’Reilly, Cambridge).

14 The Political Methodologist, vol. 14, no. 2

"IncParty","DName","RName")

loop over districts

for(i in 1:nDistricts){

cat("processing district",i,"\n")

subset this district’s data

thisDistrict <- ssData[districtLocs[i]:districtLocs[i+1]]

subset to lines with candidate-specific data

candData <- thisDistrict[grep("class=candName",

thisDistrict)]

get candName tag

namesStrings <- sapply(candData,getName)

get Name

candName <- sapply(namesStrings,getOnlyName)

get Party

candParty <- sapply(namesStrings,partyFromName)

get votes

candVotes <- sapply(candData,getVotes)

get incumbency

candInc <- sapply(candData,getInc)

match parties

whereParties <- match(parties,candParty)

if(!is.na(whereParties[1]))

Dem votes, if available

cvote[i,"D"] <- candVotes[whereParties[1]]

if(!is.na(whereParties[2]))

Rep votes, if available

cvote[i,"R"] <- candVotes[whereParties[2]]

are there minor parties (any unmatched parties)?

matchParties <- match(candParty,parties)

if(any(is.na(matchParties)))

cvote[i,"Other"] <- sum(candVotes[is.na(matchParties)],

na.rm=TRUE)

which party is the incumbent

if(any(candInc))

cvote[i,"IncParty"] <- candParty[candInc]

if("Dem" %in% candParty)

cvote[i,"DName"] <- candName[candParty=="Dem"]

dem cand name

if("Rep" %in% candParty)

cvote[i,"RName"] <- candName[candParty=="Rep"]

rep cand name

}

Note the use of the R function sapply to send mul-
tiple character strings to our utility functions. This allows
us to process an entire district at once. This block of code
produces a data frame named cvote, containing 53 observa-
tions on 6 variables. A little extra computation yields some
other useful quantities:

x <- cvote$D/(cvote$D+cvote$R)

cvote$contested <- !is.na(x)

cvote$open <- is.na(cvote$IncParty)

The first three records of this data frame appear in table 1.
The R program that generates this data frame is

available for downloading at http://jackman.stanford.
edu/pscl/ca2006.R.

Putting the Data to Work. Now that we’ve read the
data from the Secretary of State’s web site – quickly and
reliably – we can move on to analysis. In 8 seats the incum-
bent faced no major party opposition: 7 of these seats are
held by Democrats and of these, 5 are in Los Angeles. Of
the 45 contested seats, Democrats picked up one seat from
the Republicans (CA-11, in the Central Valley east of the
San Francisco Bay Area), and lost none. Democrats won
27 of the 45 contested seats (60%), and so the Californian
delegation in the 110th House consists of 34 Democrats and
19 Republicans. Across the 45 contested seats, the Demo-
cratic share of the two party vote ranged from 29.2% (in
CA-22, taking in San Luis Obispo and Kern counties, and
much of Bakersfield) to 88.8% (in CA-9, taking in Berkeley
and Oakland), and averaged 57.7%.

Figure 2: Vote Share Densities

Density, Democratic Vote Shares, California 2006 congressional elections

Vote Shares

0.3 0.4 0.5 0.6 0.7 0.8 0.9

The most politically interesting fact about Califor-
nian congressional politics is the lack of competitive seats.
Of the 45 contested seats, the closest result was CA-4, where
the Republican incumbent won with 52% of two-party votes;
the next closest seat was the seat that changed hands (CA-
11), where the Democrat won with 53.2% of the vote. These
are the only 2 of the 45 contested seats to be decided by mar-
gins of less than 5%; CA-50 was won by a Republican with
55% of the two-party votes, and the next closest result was
Mary Bono’s 60-40 win in CA-45. The closest result for a
Democrat incumbent running for re-election was the 62.2%
result recorded by Loretta Sanchez in CA-47 (centered on

http://jackman.stanford.edu/pscl/ca2006.R
http://jackman.stanford.edu/pscl/ca2006.R

The Political Methodologist, vol. 14, no. 2 15

Table 1: Example of data scraped from the California Secretary of State’s web pages after processing

D R Other IncParty DName RName contested open
1 111650 49663 7850 Dem Mike Thompson John W. Jones TRUE FALSE
2 54829 108002 5613 Rep Arjinderpal Sekhon Wally Herger TRUE FALSE
3 82293 129505 5715 Rep William E. Durston Daniel E. Lungren TRUE FALSE

Orange County).
Figure 2 presents a density plot of Democratic two-

party vote shares in the 45 contested seats. The bimodal-
ity of the density stems from the absence of competitive
seats, as discussed above. Figure 3 displays a simulated
seats-votes curve generated by applying various levels of
uniform swing to the 2006 results, tracing out a series of
average district vote shares and seat shares (while the uni-
form swing assumption is implausible, it remains a simple
and convenient way of inducing a seats-votes curve from a
set of vote shares). The relative “flatness” or “unrespon-
siveness” of the curve in the neighborhood of 50-50 again
stems from the dearth of competitive seats. In addition to
the lack of responsiveness, there is some evidence of partisan
bias: Democrats are estimated to win 58% of the contested
seats with just 50% of the average district vote. Inciden-
tally, these graphs were generated using the seatsVotes
classes and methods in the pscl package for R, developed
in the Political Science Computational Laboratory at Stan-
ford and available from any CRAN: in R, after loading the
pscl package, enter help(plot.seatsVotes) to see how
these graphs were created (the 2006 California data are the
working example in the documentation for the seatsVotes
class).

Of course, the lack of responsiveness in California’s
congressional districts has its roots in the redistricting fol-
lowing the 2000 Census. The account in the 2006 edition
of the Alamanac of American Politics is worth reading; I
reproduce a brief section of it here:

The key player for Democrats was Michael
Berman, brother of Congressman Howard
Berman and a redistricting expert who had
worked with Phil Burton on redistricting in the
1970s and 1980s. He came out of retirement and
was hired as a redistricting consultant by House
and state Senate Democrats, at $20,000 per in-
cumbent. As Congresswoman Loretta Sanchez
said, “Twenty thousand is nothing to keep your
seat. I spend $2 million every election. If my
colleagues are smart, they’ll pay their $20,000
and Michael will draw the district they can win
in.” (p. 155)

As the data show, Sanchez’s 62.2% result was the closest

a Democratic incumbent got to losing in 2006; notwith-
standing that 2006 was a very good election for Democrats,
it would seem that Sanchez and her colleagues got their
money’s worth.

Figure 3: Seats-Votes Curve

Average District Vote

P
ro

po
rt

io
n

of
 S

ea
ts

 W
on

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00
Actual
Result

Simulated Seats−Votes Curve Using Uniform Swing
Democratic Vote Shares, California 2006 congressional elections

Proportional Representation
(45 degree line)

Back to the Future. Parsing web sites as I have
done here will most likely become a “legacy” skill in the
years ahead. Slowly but surely, data is increasingly being
presented on-line via XML (Extensible Markup Language),
a data-description language designed to facilitate data ex-
change across computers. Parsing XML is thus much easier
than stripping data from HTML, and already there are tools
in R for traversing XML trees, and extracting data. Far less
programming effort will be required to get data in a form
suitable for statistical analysis as XML replaces HTML as a
method for presenting data on the web. Until then, “hacks”
like the one described in this note will likely remain part
and parcel of how we (and our RAs) acquire data.

16 The Political Methodologist, vol. 14, no. 2

Book Review

Review of Essential Mathematics for Political and Social Research, by Jeff Gill

Ryan T. Moore
Harvard University
rtmoore@fas.harvard.edu

Introduction
Jeff Gill’s new Essential Mathematics for Political

and Social Research (empsr) is one of few texts developed
for political scientists, by a political scientist, that moti-
vates the range of topics taught during a typical first gradu-
ate course in quantitative methods. Different programs in-
volve different first courses – semester courses may focus on
probability and mathematical statistics, data analysis and
regression, or research methods broadly construed; one- or
two-week pre-semester “math camps” also abound. empsr
speaks to all of these settings, but focuses on short pre-
fresher courses. After some general comments about usage
in various settings, I trace empsr’s contents more system-
atically, and compare empsr to other popular introductory
materials.

empsr could serve as the primary or secondary text
in many introductory settings. The range of topics suf-
fices to fill a semester-long course on prerequisite mathe-
matics, especially in departments where new graduate stu-
dents may arrive with little quantitative background. De-
partments that begin graduate training with data analysis
and regression could view the text as a prerequisite to pro-
gram entry, and encourage summer study by their incoming
classes. The wealth of applied examples could inform dis-
cussion in courses on general social science research meth-
ods, either at the graduate or undergraduate level. Given
their breadth, however, such courses may not invest the time
required for mastery of most mathematical skills empsr ad-
dresses. Math camp courses should seriously consider using
empsr as their primary text, and Gill offers several tem-
plates for doing so. My experience with empsr is largely
as an instructor of one such course; thus, although empsr
can contribute in several settings, a math camp perspective
dominates this review.

The students’ diverse set of backgrounds, aptitudes,
and interests creates much of the difficulty in teaching a
successful first methods course in political science. In many
programs, future philosophers sit next to future statisti-
cians. This diversity particularly complicates a math camp
textbook’s two-fold charge: to enable all students to feel rea-
sonably well-prepared on the first day of a term-time course,

and to remain relevant beyond the first week of everyone’s
graduate career. empsr achieves both, by starting with
extremely elementary material, incorporating over 100 ex-
amples (most drawn from actual, published social research),
and still touching on topics that may not resurface until the
third or fourth graduate course in statistical methods.

The numerous examples provide instructors with a
ready-made answer to a common question of new graduate
students: “Why am I starting political science grad school
with pure math?” Namely, “To learn useful tools for answer-
ing interesting substantive questions in politics.” Although
the title suggests that empsr might be purely a primer in
basic mathematics, the text highlights social science appli-
cations. Prominent examples follow in the next section.

New graduate students and those anticipating grad-
uate study should find comfort in empsr’s approachable
style, its warnings of common confusions, and in the con-
nections it draws between the mathematics and the sub-
stantive questions of interest. empsr’s chapters begin with
explicitly-stated objectives, helping to socialize new politi-
cal scientists into the academic discipline. Reference tables,
intuitive explanations, chapter lists of new terminology, and
the relevance and volume of the topics all imply that empsr
will be helpful in the early days, but also a well-worn text
by the time students finish their degrees.

Concepts and Examples
empsr begins with the most elementary mathemat-

ical topics required for quantitative research: arithmetic,
notation, and functions. However, by page 5 students have
already encountered something that political scientists will
recognize as being of significant value: Riker and Ordeshook
(1968)s model for voter utility, R = PB − C. Although
simple, this model is still widely discussed; in 2006 alone
it has appeared in the apsr, ajps, bjps, and jop. The
second chapter covers analytic geometry and includes the
most relevant topics from a high school trigonometry course.
Political-scientific examples include parabolic presidential
approval and elliptical voting preference models.

Chapters 3 and 4 straightforwardly introduce linear

The Political Methodologist, vol. 14, no. 2 17

algebra. Chapter 3 defines vectors, matrices, operations,
and related properties. Central topics in Chapter 4 in-
clude the geometry of matrices, the determinant, eigenval-
ues, quadratic forms, and inverses. Example 4.6, a two-page
exercise in estimating ols regression parameters, provides
an introduction to a ubiquitous application of matrix alge-
bra to political science data.

Scalar and vector calculus fill Chapters 5 and 6,
which include traditional definitions and applications of lim-
its, derivatives, and integrals. Example 5.9 applies scalar
calculus to another mainstay of political science, the Median
Voter Theorem of Black (1958). empsr highlights often-
used skills such as extrema- and root-finding, multiple inte-
gration, and vector differentiation. Foundations such as the
gradient and Hessian, Lagrange multipliers, and constrained
optimization appear.

The pre-statistics section of empsr begins with prob-
ability theory in Chapter 7. True to his Bayesian roots, Gill
opens the chapter with a discussion of subjective versus ob-
jective probability. This chapter includes set-theoretic def-
initions and properties, probability functions, conditional
probability, Bayes’ rule, Simpson’s paradox, and indepen-
dence. empsr also demonstrates odds, a topic that political
scientists often encounter, but may have less prior exposure
to than some other social researchers (like epidemiologists).

Chapter 8 covers random variables, and includes a 4-
page discussion of levels of measurement. empsr introduces
familiar distributional families as models for social data-
generating processes: Bernoulli and binomial data, Pois-
son counts, and uniform, exponential, gamma, and normal
Gaussian phenomena all appear. This chapter’s wealth of
applied modeling examples includes Supreme Court deci-
sions, legislative bill passage, strategic alliance formation,
incidence of war, income distributions, probit analysis of
vote choice, and the presence of women in US state legis-
latures. The last of these features a quantile-quantile plot,
thus giving a welcome introduction to model fit diagnostics.

Only after these examples does empsr cover mea-
sures of central tendency and spread. This ordering is con-
sistent with texts like Rice (1995), but can lead to discus-
sion of these measures that precedes their formal definition.
empsr succeeds more than Rice in minimizing such discus-
sion, but does not avoid it entirely as do treatments like
Purves (1991). Other topics include summary statistics’
breakdown points, correlation, expected value inequalities,
and distributions’ moments and central moments. A die-
rolling example illustrates expected value, as does an ex-
tended sequence of calculations derived from craps bets.

The last chapter is somewhat unexpected. Here,
Gill introduces Markov chains, a topic that most political
scientists might not encounter until they take a course in
Bayesian modeling or data analysis. The chapter elucidates
major chain concepts (periodicity, homogeneity, irreducibil-

ity, reversibility) and state characteristics (recurrent, ab-
sorbing, transient, closed). Gill demonstrates the utility of
Markov chains as descriptive of social processes in their own
right, but the underlying motivation may be to lay founda-
tions for future Bayesian work.

Comparisons and Conclusions
There are many candidate materials for political sci-

ence math camps. Instructor’s notes, Simon and Blume
(1994), Morgan (1997), and Hagle (1996) appear particu-
larly common. empsr contrasts with Hagle and Morgan in
two primary ways. First, empsr’s scope is broader. The
last third of empsr covers probability and statistics mate-
rial omitted from the other two texts, for example. Second,
the exercises and examples in empsr are significantly more
applied than those of Hagle or Morgan.

One’s preference for adopting empsr may hinge on
whether one prefers the clear lines of fundamental skills
repetition or the more thought-provoking and interpretive
fuzziness of examples of political science research. To illus-
trate the difference, consider the problem sets on differentia-
tion. Hagle’s includes six consecutive questions instructing
simply, “Find the derivatives of the following functions.”
Meanwhile, empsr sandwiches its one such question be-
tween exercises using published political research on subur-
ban demographics and the siting of US county seats. Exer-
cises in Hagle, Morgan, and Simon and Blume are also split
into relatively small, homogeneous sections, while those of
empsr are collected at chapters’ ends. The former design
encourages rote repetition, while the latter can obscure basic
skills, but more accurately reflects the problems and choices
students of methodology will face.

In my view, occasional over-complexity is the weak-
ness of empsr. While the variety of examples is generally a
strength of empsr, sometimes there is too much of a good
thing. For example, in demonstrating inner products and
cross products, Examples 3.6 and 3.8 use the same defi-
nitions for 1 × 3 vectors u and v, but Example 3.7 uses
different ones. Using consistent definitions would simplify
the matter and allow readers to focus on understanding the
algebra. For a math camp, empsr’s problem sets are long
and include some potentially intimidating problems. Select-
ing exercises to assign will require judicious consideration of
one’s audience. Also, at this time, an answer key is still in
development. Until its release, instructors may have to sup-
ply their own solutions.

On the whole, empsr succeeds. Its range and depth
of topics form appropriate standards for incoming and con-
tinuing political science graduate students. Its constant at-
tention to published research introduces budding profession-
als to exactly how and why learning mathematics is an im-
portant first step.

18 The Political Methodologist, vol. 14, no. 2

References

Black, Duncan. 1958. Theory of Committees and
Elections. Cambridge: Cambridge U Press.

Freedman, David, Robert Pisani and Roger Purves.
1991. Statistics. New York: Norton.

Hagle, Timothy M. 1996. Basic Math for Social
Scientists. Thousand Oaks: Sage.

Morgan, Frank. 1997. Calculus Lite. Wellesley, MA:

A.K. Peters.

Rice, John A. 1995. Mathematical Statistics and Data
Analysis. Belmont, CA: Duxbury Press.

Riker, William H. and P.C. Ordeshook. 1968. “A
Theory of the Calculus of Voting.” American
Political Science Review 62 (1):2542.

Simon, Carl P. and Lawrence Blume. 1994. Mathematics
for Economists. New York: W.W. Norton.

Section Activities

A note from our Section President

I would like to offer a hardy thank you to Adam Berinsky,
Michael Herron, and Jeff Lewis for their hard work and ded-
ication in producing The Political Methodologist for the past
three years! It is an invaluable communication tool for the
section. Please join me in welcoming the new TPM editors,
Paul Kellstedt, David Peterson, and Guy Whitten. We look
forward to continued success of TPM under the guidance of
the new Texas A&M editors.

Nominations for the second annual John T. Williams
Dissertation Prize are being solicited. The prize is given
in recognition of John T. Williams’ contribution to gradu-
ate training and is for the best dissertation proposal in the
area of political methodology. Proposals using quantitative
or qualitative methods are welcomed and should follow the
National Science Foundation length and format guidelines.
Members of the committee are John Aldrich (chair), Tse-
Min Lin, and Michael Colaresi. Materials should be sent to
the John Aldrich at aldrich@duke.edu.

The 24th Annual Summer Meeting of the Society for
Political Methodology will be held at Pennsylvania State
University, July 19-21. The hosts, Suzanna DeBoef and
Burt Monroe, have information about the conference avail-
able on the conference website at: http://polmeth.psu.
edu/. The past success and popularity of the meetings have
led the Society’s membership to support the recommenda-
tion of the Long Range Planning Committee by implement-
ing an alternative model for the meeting to accommodate
increased demand. In an effort to extend participation, the
meeting size is growing substantially. With increased size,
however, come some inevitable changes. The basic program
format and the venerated graduate student poster session
will remain. The host institution will be providing break-
fast and lunch for the participants throughout the confer-
ence and will host a dinner and a reception in 2007. All
other expenses (notably, hotel accommodations and remain-
ing dinners) will be covered by attendees. Registration ap-

plications are available at: http://polmeth.wustl.edu/
methods2007/register/. We thank the program commit-
tee, Rebecca Morton (chair), Suzanna DeBoef, Burt Mon-
roe, Kevin Quinn, and Jake Bowers for their hard work and
dedication in bringing together the meeting. The National
Science Foundation, in conjunction with Penn State Univer-
sity, will continue to support 35 graduate students through
a competitive process. We thank the Graduate Student Se-
lection Committee for their work as well. The committee
includes Dan Wood (chair), Michele Claiborne, David Dar-
mofal, and Kevin Clarke.

We now have over sixteen active committees. A full
listing of all the committee members and a list of their
charges is available on the Political Methodology website:
http://polmeth.wustl.edu/society.php. We thank for
Andrew Martin and Stephen Haptonstahl at Washington
University for their work on the website. They provide
ths excellent service for the section gratis. I want to high-
light one new committee, the Undergraduate and Graduate
Methodology Committee, which is chaired by Lonna Atke-
son. Other committee members include Garrett Glasgow,
Paul Gronke, Dean Lacy, and Alan Zuckerman. Agenda
items include: 1) developing best practices for departments
and students in order to be prepared for graduate school
in political science; 2) increase the availability of methods
syllabi; 3) sponsor panels at the APSA Teaching and Learn-
ing Conference on undergraduate and graduate methods;
4) brainstorm about what the section should be doing for
it’s members who are at schools where there is significant
emphasis on undergraduates and teaching; 5) explore best
practices for interdisciplinary methods training for graduate
students. Please contact them if you want to get involved
or have an idea to share with them.

Best wishes,

Jan Box-Steffensmeier
The Ohio State University

http://polmeth.psu.edu/
http://polmeth.psu.edu/
http://polmeth.wustl.edu/methods2007/register/
http://polmeth.wustl.edu/methods2007/register/
http://polmeth.wustl.edu/society.php

The Political Methodologist, vol. 14, no. 2 19

[This page Intentionally blank]

The Political Methodologist
Department of Political Science
Massachusetts Institute of Technology
Cambridge, MA 02139

Nonprofit Org.
U.S. Postage

Paid
MIT

The Political Methodologist is the newsletter of the Po-
litical Methodology Section of the American Political
Science Association. Copyright 2006, American Po-
litical Science Association. All rights reserved. The
support of the MIT Department of Political Science
in helping to defray the editorial and production costs
of the newsletter is gratefully acknowledged.

Subscriptions to TPM are free to mem-
bers of the APSA’s Methodology Sec-
tion. Please contact APSA (202 483-2512,
http://www.apsanet.org/about/membership-form-1.cfm)to
join the section. Dues are $25.00 per year and include
a free subscription to Political Analysis, the quarterly
journal of the section.

Submissions to TPM are always welcome. Ar-
ticles should be sent to the editor by e-mail
(berinsky@mit.edu) if possible. Alternatively, sub-
missions can be made on diskette as plain ascii files
sent to Adam J. Berinsky, MIT Department of Po-
litical Science, 77 Massachusetts Avenue, Cambridge,
MA 02139 E53-459. LATEX format files are especially
encouraged. See the TPM web-site,
http://polmeth.wustl.edu/tpm.html, for the latest
information and for downloadable versions of previous
issues of The Political Methodologist.

TPM was produced using LATEX on a PC running
MikTex and WinEdt.

President: Janet M. Box-Steffensmeier
The Ohio State University
jboxstef@osu.edu

Vice President: Philip A. Schrodt
University of Kansas
schrodt@ku.edu

Treasurer: Jonathan Katz
California Institute of Technology
jkatz@hss.caltech.edu

Member-at-Large: Wendy Tam Cho
Northwestern University
wktc@northwestern.edu

Political Analysis Editor: Bob Erikson
Columbia University
rse14@columbia.edu

http://www.apsanet .org/about/membership-form-1.cfm
http://polmeth.wustl.edu/tpm.html

	Notes from the Editors
	Articles
	David Firth and Arthur Spirling: tapiR and The Public Whip: Resources for Westminster Voting

	Computing and Software
	David K.Park, Andrew Gelman, and Noah Kaplan: R2WinBUGS: Running WinBUGS from R
	Simon Jackman: Data from the Web into R

	Book Reviews
	Ryan T. Moore: Review of Essential Mathematics for Political and Social Research, by Jeff Gill

	Section Activities
	A note from our Section President

