
The Political Methodologist
Newsletter of the Political Methodology Section

American Political Science Association

Volume 14, Number 1, Spring 2006

Editors:
Adam J. Berinsky, Massachusetts Institute of Technology

berinsky@mit.edu

Michael C. Herron, Dartmouth College

Michael.C.Herron@dartmouth.edu

Jeffrey B. Lewis, University of California Los Angeles

jblewis@ucla.edu

Editorial Assistant:
Seth J. Hill, University of California Los Angeles

sjhill@ucla.edu

Contents

Notes from the Editors 1

Articles 2

Philip A. Schrodt: Twenty Years of the Kansas
Event Data System Project 2

Computing and Software 6

William G. Jacoby: The Dot Plot: A Graphical
Display for Labeled Quantitative Values . . . 6

Jasjeet S. Sekhon: The Art of Benchmarking:
Evaluating the Performance of R on Linux
and OS X . 15

The LATEXCorner 19

Ian Yohai: PowerPointTMfor LATEX: The beamer

Class . 19

Book Reviews 21

Joshua D. Clinton: Review of Keith T. Poole’ Spa-
tial Models of Parliamentary Voting 21

Section Activities 24

A note from our Section President 24

Announcements 25

Association of Religion Data Archives 25

Notes From the Editors

Welcome again to The Political Methodologist. Our issue
leads off with an article by Phil Schrodt describing the 20-
year evolution of the Kansas Event Data System Project
(KEDS). We then move to two articles in the computing
section. William Jacoby makes the case that political sci-
entists should present their data with dot plots and pro-
vides R code to produce these graphics. Jasjeet Sekhon
then describes a general methodology for benchmarking
software and presents an application, evaluating the rela-
tive performance of R on Linux and OS X. Next, in the
LATEXcorner, Ian Yohai describes BEAMER, a program that
facilitates the preparation of PowerPoint-like presentations
using LATEX. We also have in this issue a review of Keith
Poole’s recent book on Spatial Models of Parliamentary Vot-
ing, another title in the Analytical Methods for Social Re-
search series, published by Cambridge University Press. We
plan to review additional titles from this series in future is-
sues. We close with a note from our section President, Janet
Box-Steffensmeier.

The next issue of TPM is beginning to take shape,
but we are always on the lookout for more material. Your
submissions and ideas for topics to address are most wel-
come.

The Editors

2 The Political Methodologist, vol. 14, no. 1

Articles

Twenty Years of the Kansas Event Data System Project

Philip A. Schrodt
University of Kansas
schrodt@ku.edu

In the beginning there was event data

Event data—sequences of nominal codes recording
the interactions among political actors—have been a major
focus of quantitative international relations (IR) research
since the 1960s and 1970s.1 Until recently most event
data analysis used either Edward Azar’s (1982) Conflict
and Peace Data Bank (COPDAB) or Charles McClelland’s
(1976) World Event Interaction Survey (WEIS), but over
the past decade the combination of machine-readable news
reports and automated coding have dramatically reduced
the costs of generating new data sets.

This article will discuss the development of the au-
tomated coding systems of the Kansas Event Data System
(KEDS) project, which developed the first automated cod-
ing system—the eponymous Keds computer program—that
could produce data acceptable in refereed articles. This is a
personal history rather than an attempt to provide a fully
balanced account, and is told from my perspective with an
emphasis on the developments that seemed most important
to me; other recollections may differ.

Roots
The initial enthusiasm for event data among re-

searchers was tempered by the fact that it was very expen-
sive to produce. Historically, event data have been coded
by legions of bored students flipping through copies of The
New York Times. Event data collection slowed in the late
1970s as funding—which had largely come from the U.S.
Department of Defense Advanced Research Projects Agency
(DARPA)—was discontinued. The existing data sets con-
tinued to be widely used—one study found them to be the
third most frequently used form of data in quantitative IR
research—but they were not updated.

In the mid-1980s, I became involved in a fascinating
set of work influenced by the then very trendy research on
“artificial intelligence” (AI). A number of political scientists,
dissatisfied with the limitations of conventional statistical
analysis, attempted to apply AI to the formal study of inter-

national relations and foreign policy. This produced a vari-
ety of quite novel approaches using computational methods
before being tragically destroyed after exposure to a partic-
ularly virulent strain of post-modern deconstructionism, for
which at the time there was very little acquired immunity.2

My own efforts at computational modeling largely revolved
around applications of event data, in particular trying to
use these to simulate the problem of reasoning by analogy
(see http://www.ku.edu/~keds/papers.dir/Schrodt.PRL.2.0.pdf).

I used an assortment of event data sets in this work,
mostly versions of COPDAB and WEIS that I had acquired
from various sources. It was clear, however, that these were
not very dense, particularly on the Arab-Israeli conflict, the
area where I was also doing field research. More critically,
they were not being updated, so I could not use them to
study contemporary issues or do true forecasting.

In the process of doing some contract programming
for a West Coast consulting firm developing a political
decision-support system “for a major U.S. ally”, I became
acquainted with (and obtained a copy of) a WEIS data set
that had been collected by various defense consulting firms
for no less a client than the National Security Council in
the Reagan White House, where event data was champi-
oned by a McClelland student named Richard Beale. This
effort continued until Beale’s untimely death in 1985.

One of the novel features of this version of WEIS
was the inclusion of brief English-language summaries of
the news story that generated the event. This provided an
opportunity to check whether it was possible, in principle,
to go from a natural language text to event codes. Working
with a Northwestern University undergraduate, David Leib-
sohn, I developed a simple computer program that mapped
keywords to event codes, and presented this at the 1985 In-
ternational Studies Association meetings (Schrodt and Leib-
sohn 1985). This produced credible results, and in particu-
lar provided early evidence that while some WEIS categories
were subtle and difficult to code consistently (probably for
humans as well as machines), many of the most common

1The editors note with sadness that Deborah Gerner, Phil Schrodt’s wife and collaborator on the KEDS project, died on June 19, 2006 after a
long illness. We express out condolences to Phil.

2Sylvan and Chan (1984) provides early examples of the AI approach; Hudson (1991) has later, more sophisticated examples, and Trappl (2006)
shows the approach is not dead yet.

The Political Methodologist, vol. 14, no. 1 3

events—notably meetings and uses of force—were straight-
forward because they were described using a very distinct
and specific vocabulary.

In the late 1980’s, the National Science Foundation
undertook a major initiative titled “Data Development in
International Relations” to update the most widely used in-
ternational relations data sets (and, one suspects, reduce
the grousing from the quantitative IR community over the
resources going to the American National Election Survey).
The second phase of DDIR was headed by my dissertation
adviser Dina Zinnes and her colleague, the late Richard Mer-
ritt (Merritt, Muncaster and Zinnes 1994). A group of about
twenty researchers was convened, and eventually NSF in-
vested about $350,000 in a number of different event data
projects.

Automated coding was seen as a possible, but by
no means proven, approach to reducing the costs of pro-
ducing event data. My initial contribution to DDIR was a
machine learning program that was an elaboration of the
Schrodt-Leibsohn work. It worked reasonably, though not
spectacularly well, and its ultimate contribution was to sim-
ply provide some of the basic code for what would develop
into Keds. The machine learning aspect was consistent
with most of my work in AI, but turned out to be a dead-
end: Keds and Tabari both eventually required extensive,
and highly expert, dictionary development by humans. In
retrospect, this simply reflected a general lesson from au-
tomated natural language processing in the 1980s—humans
are so good at language, and language is such an idiosyn-
cratic human construct, that it is better to let humans tell
a machine what to do (and then have the machine routinely
do it) than to try to develop machine learning algorithms.3

By the late 1980s, we had a reasonable set of tech-
niques that provides credible results, but we had only shown
that we could map natural language news summaries into
event categories. This was a long way from the “holy
grail” of producing data directly from news wire accounts.
The closest thing available seemed to be various machine-
readable indices, but these typically had insufficient infor-
mation to resolve events beyond the level of the dozen or so
major “cue categories” in the event coding schemes.

At this point I had a chance encounter with a stu-
dent involved with the University of Kansas debate program
who, on hearing about my research, asked “Why don’t you
just use Reuters?—it’s available on NEXIS.” “Where do I
get NEXIS?” “At the Law School—all the debaters use it
there.”4

I arranged a meeting with one of the Law School
librarians, who demonstrated that one could, in fact, down-
load Reuters stories via a dial-up connection. He assured us
that there was no marginal cost to the Law School for using
the service, and then noted that the Law library was closed
overnight. He then suggested we wait while he showed us a
couple more things about the system, but he had to check
with NEXIS technical support first. He placed a couple of
calls, asking questions at the level of “Which one is the any
key??” but in the process of getting authorization, repeated,
loudly and slowly “Our NEXIS password is. . . ”.

Dial-up connection, library is closed, here’s the pass-
word: we can take a hint. We set up a simple script to
automate a log-in to NEXIS from about 2 a.m. to 5 a.m.,
and over the next several months downloaded tens of thou-
sands of stories.

KEDS
Based on the WINR demonstration, DDIR provided

a small $40,000 grant in 1991-1993 for the development of
what became the Keds program. While I continued to do
most of the computer programming, the bulk of the value
added from the KEDS project has been provided by the
twenty or so “dictionary developers” who have been involved
with the project and devoted thousands of hours to refin-
ing the dictionaries that are essential to producing data.5

As I am endowed with the inter-personal skills typical of a
computer programmer, this aspect of the project has been
directed by my collaborator Deborah J. Gerner.

While the Keds work for DDIR included some ex-
perimentation with German-language sources and foreign
policy chronologies (Gerner et al 1994), most of our devel-
opment focused on WEIS coding of interactions in the Mid-
dle East reported by the Reuters news service in English.
We focused on this area both because it is very thoroughly
covered in the international press, but also because we were
doing field work in the area and could therefore cross-check
the validity of event data based on our experience in the
region.

Keds had its professional debut at the 1992 Interna-
tional Studies Association meetings in Atlanta. The confer-
ence paper was being written, typically, at almost the last
minute, and focused on a 12-year time series for the Arab-
Israeli conflict. A number of different pieces had to come
together to generate this—downloading and formatting the
Reuters stories, on-going dictionary development, and ag-
gregation of the resulting events into an interval-level time

3The contemporaneous DARPA sponsored ”Message Understanding Conference” project (DARPA 1993) had somewhat similar objectives—
extracting details of terrorist incidents from news wire stories (and involving real computer scientists and real linguists!)—and came to similar
conclusions: systems using extensive phrase dictionaries developed by humans far out-performed machine-learning systems.

4Yes, kiddies, in those days NEXIS was a highly restricted resource, not something available on a browser at most research universities. We
also walked to and from school every day in the snow. Barefoot. In June. Uphill. Both directions.

5An eloquent description of the challenges of dictionary development can be found in Joseph Pull’s “Ode on Coding”
http://www.ku.edu/~keds/home.dir.ode.html which Pull wrote prior to leaving the project for Yale Law School.

4 The Political Methodologist, vol. 14, no. 1

series using the Goldstein (1992) scale—so only when the
paper was nearly finished that could I actually look at the
results. I still vividly remember finally getting the Israel-
Palestinian series, and plugging it into MS-Excel to get
a basic plot. My great fear was that the Palestinian in-
tifada would not show up in the data. To my tremendous
relief, there it was as a lovely (if noisy) spike followed by
an exponential decay, the most conspicuous feature of the
series. On early-1990s hardware, the system coded about 70
events per second, a huge improvement over human coding
projects, which typically have a sustained output of five to
ten events per coder per hour.

One of the people who heard that ISA presentation
was Doug Bond from the Program on Nonviolent Sanctions
in Conflict and Defense at the Center for International Af-
fairs at Harvard who was beginning the development of a
new event coding scheme, the Protocol for the Assessment
of Nonviolent Direct Action (PANDA). The PANDA project
worked in close collaboration with us for the next two years
during the most intense development of Keds in dictionary
development, identification of bugs, and validation.

The PANDA work eventually spun off a commercial
event coding operation—VRA, Inc. (http://vra.com)—
which developed a coding program that used quite different
principles than Keds. The PANDA coding system, with
the added collaboration of Craig Jenkins (Ohio State) and
Charles Taylor (VPI) morphed into the Integrated Data for
Events Analysis (IDEA) coding scheme (Bond et al 1997).
Reuters reports dealing with the entire world have been
coded for by VRA for 1985-2004; the resulting data set con-
tains about 10-million events and can be downloaded from
http://gking.harvard.edu/data.shtml.

Tabari

Keds was written in the Pascal programming lan-
guage and worked only on Apple Macintosh computers. The
choice of Pascal made sense at the time—it was the core
language for the Macintosh operating system and my vis-
ceral loathing of Microsoft made the Macintosh the only op-
tion if I were to be doing the programming.6 However, by
the late 1990s Pascal had been largely superceded by the
C/C++ as the most common general-purpose programming
language and compiler support for the language was dwin-
dling. Furthermore, while Keds was generally stable from
1995 to 2000, it contained some deep-seated idiosyncrasies
that could only be eliminated by completely rewriting the
program.

In response to this, Tabari —Textual Analysis By
Augmented Replacement Instructions—was created in the

spring of 2000. It is based on the same sparse-parsing prin-
ciples as Keds but is written as “open-source” code in ANSI
C++ and was immediately ported to the Linux and Win-

dows operating systems. The conversion to C++ resulted
in a program that was substantially faster than the Pas-

cal code—the program codes about 8,500 records per sec-
ond even on an inexpensive machine, a $500 1.2 Ghz G4
Mac Mini. This is about 300-times faster than Keds, and
about 33-million times faster than typical human coding.
A simple keyboard-driven interface is implemented using
the Unix “ncurses” terminal library, and consequently we
now have 100% compatibility between the Macintosh and
Unix/Linux versions, as well as allowing the program to
run remotely from a server.7

The most recent development in our project has
been the CAMEO—Conflict and Management Event
Observations—coding scheme. This is a new coding sys-
tem specifically designed for automated coding, and has also
evolved to accommodate the post-Cold War emphasis on
political events involving sub-state actors. This work has
been primarily done by Deborah Gerner and her graduate
student Ömür Yilmaz.

In addition to Tabari and CAMEO, the KEDS
project has produced an increasingly diverse set of utility
programs to support the production of event data. The
most important of these have been our automated down-
loading programs, which have evolved from a script running
a dial-in connection followed by processing in Pascal to an
integrated perl program that does downloading and refor-
matting from HTML files taken off the web. Actor Filter

is another one of our stalwarts: this identifies the actors in
a set of text based on capitalization patterns, and produces
a keyword-in-context index of these, sorted by frequency.

Funding
The Keds and Tabari systems—both the program-

ming and the more labor intensive dictionary development—
have been funded by a combination of NSF grants and gov-
ernment contracts, with occasional bridge funding from KU,
and an interesting contract doing conflict monitoring for a
Swiss-based NGO. We’ve been lucky (okay, we’ve also made
our luck. . .): money has always been available for the tasks
we needed to do, and in fact at times we’ve turned down
work because of our limited number of trained coders [take
the hint: if you can master the relevant tools, there is more
funding available for this than we can handle].

We’ve always kept our work unclassified, for both
principled and pragmatic reasons. We’ve no desire to be-
come the Kansas equivalent of Los Alamos scientist Wen Ho

6Linux was still a gleam in Linus Torvald’s eye when work began on Keds, and machines running various flavors of Unix were quite expensive.
This is Kansas: we don’t do expensive.

7We’ve had less success finding someone to keep the Windows version current. Whatever. . .
8Trust us, any FBI agent based in Topeka will want to get out.

The Political Methodologist, vol. 14, no. 1 5

Lee and advance the career of a zealous FBI agent anxious to
get out of Topeka.8 Meanwhile the value-added of classified
material in the real world doesn’t quite live up to its por-
trayal in the movies: consider for example the timely warn-
ings provided by classified analysis on the collapse of the
Soviet Union, India nuclear weapons tests, Iraqi WMDs and
the recent Hamas electoral victory. As the “open source”
concept was popularized in the late 1990’s, we shifted all of
our work to that mode.

The KEDS project has generally been a relatively
small affair: typically Gerner and me, one or two graduate
assistants, a data manager, and a half-dozen coders. We’ve
been larger—last summer PRI’s accountant came to me and
said “Do you realize you’ve got twenty people on your pay-
roll??” (uh, no, I hadn’t—kinda creeps up on you. . .)—but
smaller is the norm. I occasionally get emails from peo-
ple wanting to come and visit “our shop”—presumably en-
visioning the vast KEDS Building with its own cafeteria,
weight room and day-care center. I explain that there re-
ally isn’t a shop, just a web page: nothing to see here, move
along, move along.

Mama don’t your babies grow up to be event
data analysts

At this point we have spent five years in initial exper-
imentation with automated coding methods, devoted about
fifteen years to operational program and dictionary develop-
ment, produced regional data sets for about thirty countries,
and now have the capability of maintaining data sets with
a resolution of about a day at close to zero marginal cost
(or at least a lower marginal cost than any other known
method of creating data in the social sciences, including
curb-stoning). Event data analysis has therefore taken the
quantitative international relations world by storm, right?

Well, no. While articles utilizing event data have ap-
peared on a relatively regular basis in all of the refereed
“sacred journals” that carry quantitative work, it remains
very much a niche approach in international relations and
comparative politics. Individuals focusing on event data
analysis have, with a couple of exceptions, not fared partic-
ularly well in the academic job market: in fact the individual
who I feel was doing some of the very best work outside of
KU was, at last report, running a coffee shop.

Event data has fared substantially better in the pol-
icy community, and several people who have been unable to
secure academic employment have gone on to positions as
quantitative policy analysts in the defense and intelligence
communities. There they pull down salaries twice those
of academics, don’t have to attend faculty meetings, don’t
grade bluebooks, and can’t take their work home because it
is classified.

This latter point, however, means that we have had
very little feedback from the policy community. Six months
after one of my best-trained students took a defense-related
job where he was hired explicitly for his event data training,
we met at the APSA. ”Job going well?” says I. ”Yep.” says
he. ”Bet you can’t tell me a single thing about it.” says I.
”Yep.” says he.9

Two things stand in the way of this. The first is
paradigmatic: quantitative research in international rela-
tions is dominated by the “Correlates of War” approach
that has almost nothing in common with event data analy-
sis. COW studies typically involve the analysis of interval-
level variables measured at the nation-state dyad-year level
across two centuries and the entire international system. In
contrast, contemporary event data analysis focuses nomi-
nal measurements in protracted conflicts across a couple of
decades or less, but with daily resolution and an increas-
ing focus on sub-state actors. The COW community has
generally focused on retrospective inference guided by theo-
retical issues; the event data community on policy-relevant
forecasting.

The second problem involves the shortage of
nominal-level time series methods. These exist—for exam-
ple hidden Markov models—but they are generally closer
to pattern recognition methods than to classical frequen-
tist statistics. Interval-level time series are used exten-
sively in econometrics, a field already familiar to most po-
litical methodologist. In contrast, the two major sources
of nominal-level methods are the very unfamiliar fields of
linguistics and bioinfomatics.

Central to the Japanese “manufacturing miracle” of
the second half of the twentieth century was the concept
of kaizen—incremental improvement. A worker’s sugges-
tion that increases the quality of a product by only 0.1%
will, when combined with similar suggestions by thousands
of workers over a period of decades, provide the technolog-
ical leverage to reduce a device for playing music from the
size of a suitcase to the size of a pocket knife, while hugely
increasing capacity and quality.

Keds was an improvement over human coding.
Tabari and the VRA Coder are improvements over Keds,
and Tabari can be incrementally augmented through
the open-source development process. The CAMEO and
IDEA coding schemes are improvements over WEIS and
COPDAB. Each time a coder finds another verb phrase to
add to the dictionary, or adds another name to the list of
actors being coded, the probability of sentences being coded
correctly increases, however slightly.

At this point we probably have a good idea of how
to produce event data—all event data articles published in
major journals over the past ten years have used machine-

9This “I could tell you but then I’d have to kill you” problem has also affected forecasting models using rational choice methods. These may,
or may not, be extensively used in the intelligence community, depending on who you want to believe.

6 The Political Methodologist, vol. 14, no. 1

coded data, and the last major human coding project was
shut down in 2004 following a comparison between its data
and a comparable data set produced using Tabari. We still
need to take the next step in figuring out some really good
things to do with it. But at least we’ve started.

For further information:
The KEDS project maintains a very extensive web

site at http://www.ku.edu/~keds. At this site you will
find the most recent versions of the software and documen-
tation, assorted coding dictionaries, data sets and utility
programs, a FAQ (frequently-asked-questions) section, and
copies of papers from our project and related efforts.

References

Azar, Edward E. 1980. “The Conflict and Peace Data

Bank (COPDAB) Project.” Journal of Conflict

Resolution 24:143-152.

Bond, Doug, J. Craig Jenkins, Charles L. Taylor and

Kurt Schock. 1997. Mapping Mass Political Conflict

and Civil Society: The Automated Development of

Event Data. Journal of Conflict Resolution 41, 4:

553-579.

Defense Advanced Research Projects Agency. 1993.

Proceedings of the Fifth Message Understanding

Conference (MUC-5). Los Altos,CA: Morgan

Kaufmann.

Gerner, Deborah J., Philip A. Schrodt, Ronald A.

Francisco, and Judith L. Weddle. 1994. “The

Machine Coding of Events from Regional and

International Sources,” International Studies

Quarterly 38:91-119.

Goldstein, Joshua S. 1992. “A Conflict-Cooperation

Scale for WEIS Events Data.” Journal of Conflict

Resolution 36: 369-385.

Hudson, Valerie, ed. 1991. Artificial Intelligence and

International Politics. Boulder: Westview

McClelland, Charles A. 1976. World Event/Interaction

Survey Codebook. (ICPSR 5211). Ann Arbor:

Inter-University Consortium for Political and Social

Research.

Merritt, Richard L., Robert G. Muncaster and Dina A.

Zinnes, eds. 1993. International Event Data

Developments: DDIR Phase II. Ann Arbor:

University of Michigan Press.

Schrodt, Philip A. and David Leibsohn. 1985. “An

Algorithm for the Classification of WEIS Events

from WEIS Textual Data.” Paper presented at the

International Studies Association, Washington,

March 1985.

Schrodt, Philip A. and Deborah J. Gerner. 1994.

“Validity assessment of a machine-coded event data

set for the Middle East, 1982-1992.” American

Journal of Political Science 38: 825-854.

Trappl, Robert, ed. 2006. Programming for Peace :

Computer-Aided Methods for International Conflict

Resolution and Prevention. Berlin: Springer.

Computing and Software

The Dot Plot: A Graphical Display for Labeled Quantitative Values

William G. Jacoby
Michigan StateUniversity
jacoby@msu.edu

The dot plot is an extremely useful tool for obtaining
pictorial representations of quantitative information.1 This
display method is very flexible and potentially applicable
to any situation where numeric values are associated with

descriptive labels. For example, dot plots can be used to de-
pict raw data, frequency counts, descriptive statistics, and
parameter estimates from statistical models. A carefully
constructed dot plot contains an enormous amount of in-

1I would like to thank David Armstrong, Michael Colaresi, and Saundra Schneider for their excellent comments and suggestions on earlier drafts
of this paper.

The Political Methodologist, vol. 14, no. 1 7

formation. More important, a dot plot can convey that
information in a way that overcomes some of the problems
frequently encountered with other graphical displays.

Definition and Examples
A dot plot is a two-dimensional graphical display of

objects, showing some quantitative characteristic of those
objects. One axis of the dot plot (usually the horizontal) is
a scale covering the range of quantitative values to be plot-
ted. The other axis (usually the vertical) shows descriptive
labels that are associated with each of the numeric values.
The data objects usually are sorted according to the quan-
titative values. Plotting symbols are placed within the dis-
play area of the dot plot, locating each data object at the
intersection position for its label on the vertical axis and
associated numeric value on the horizontal axis. While this
simple definition covers the basic features of the dot plot,
it is important to emphasize that the utility and flexibility
of such a display come from the details that are included in
its construction. Let us consider several examples that will
illustrate the dot plot’s various features and advantages.

The simplest application of the dot plot is to dis-
play the empirical distribution of values on a single vari-
able. Figure 1 shows a dot plot of policy priority scores
for the American states in 1992. This is an interval-level
variable obtained from an unfolding analysis of the states’
proportionate spending levels across fifteen program areas
(Jacoby and Schneider 2001). Larger values on this vari-
able indicate that a state spent more on a set of policies
that Jacoby and Schneider labeled “collective goods” such
as highways, parks, and law enforcement. Smaller values
correspond to more spending on “particularized benefits,”
including welfare, health care, and employment security.

Figure 1 is very easy to interpret. The labels in the
margin of the vertical axis are the state names. The spend-
ing priority score for each state can be determined from the
horizontal position of the plotted point within that row: The
farther to the right, the larger the data value (i.e., higher
spending on collective goods); the farther to the left, the
lower the data value (i.e., more spending on particularized
benefits).

Note the efficiency with which the information is pre-
sented in Figure 1. The horizontal dotted lines facilitate ta-
ble look-up without being too intrusive on the data points.
And, because the observations are sorted by the data values,
the graph is, effectively, a transposed quantile plot. There-
fore, the display provides information about the shape of
the distribution. It is also very easy to obtain visual esti-
mates of the “important” quantiles, such as the median (the
value that occurs at the midpoint along the vertical axis),
the quartiles (the values that occur one-fourth of the way in
from the top and bottom of the graph), and the extremes
(the first and last values along the vertical axis). Thus, a

dot plot enables the analyst to see both “the forest” (i.e.,
the distribution) and “the trees” (i.e., the individual obser-
vations).

Figure 2 illustrates a variation of the basic dot plot,
showing state education spending for fiscal year 2000, in dol-
lars per capita. This display provides exactly the same kind
of information as Figure 1. But here, the varying-length hor-
izontal lines emphasize the shape of the point array (and,
hence, of the distribution, itself) more clearly. Note also
that the dashed lines in Figure 2 all emanate from the zero
point on the horizontal axis. Therefore, the line lengths
for different states can be compared to facilitate magnitude
judgments about the data values.

The basic dot plot data display can be adapted very
easily to allow comparisons across subgroups of observa-
tions. For example, Figure 3 is a divided dot plot, showing
individual state policy priority scores within separate re-
gions. Again, a great deal of information can be extracted
from this display. The data values are sorted within the
regions. The order of the regions, themselves, within the
plot is determined by their respective medians. Intra-region
variability can be assessed through the slope of the point
array for a particular region, or through the spread of its
points along the horizontal axis. And, the graphical display
makes it easy to see potentially misleading elements of the
data, such as within-region outliers, that might affect the
calculated values of region-specific summary statistics.

Dot plots are certainly not limited to displays of raw
data. They can also be used very effectively to show quan-
titative summaries of data values within partitions of an
overall dataset either across subsets of the observations or
across separate variables (or both). As an example, Figure
4 uses data from the 2004 CPS National Election Study to
show the mean importance ratings that survey respondents
assigned to ten issues (scored on a one-to-five scale, with
larger values indicating the issue is more important). The
symmetric horizontal “wings” around each plotted point
correspond to the 95% confidence interval for each mean.
Horizontal reference lines are omitted from this dot plot,
not only because of the relatively small number of points,
but also because they would interfere with visual perception
of the error bars.

The dot plots presented here should hint at the va-
riety of ways this kind of display can be used. Of course,
there are many other possibilities. For example: The plot-
ted points could be arranged according to some substantive
scheme, rather than sorted by the data values; repeated
measures of a variable could be handled by including more
than one plotting symbol on each horizontal line; parameter
estimates from statistical models (e.g., cell frequencies from
a contingency table or coefficients from a regression equa-
tion) could be displayed; and so on. Regardless of specific
context, the “trick” in constructing an effective dot plot lies

8 The Political Methodologist, vol. 14, no. 1

in adjusting the details to facilitate the kinds of judgments
that the analyst wants readers to make when interpreting
the graphical information in the display.

Advantages of Dot Plots
Dot plots are covered extensively in Cleveland’s work

(e.g., 1993; 1994) and my own monograph (Jacoby 1997) on
statistical graphics. However, it is definitely accurate to say
that the dot plot is a relatively uncommon graphical display
in the political science research literature. This is unfortu-
nate, because dot plots have some clear advantages over
their “competitors” for displaying labeled data: pie charts
and bar charts.

First, there is a simple, practical advantage: Dot
plots can show a larger number of data points than either pie
charts or bar charts. A dot plot can include a surprisingly
large number of points– it is really only limited by the space
available in the display medium. Pie charts are limited to a
fairly small number of distinct “wedges;” otherwise, visual
perception of the quantitative information becomes nearly
impossible. With bar charts, the width of the bars necessar-
ily becomes narrower as the number of distinct data values
increases. In fact, with a large number of plotted values,
a bar chart becomes virtually indistinguishable from a dot
plot.

A second, theory-based, advantage is that dot plots
facilitate relatively accurate graphical perception. Visual
processing of a pie chart requires the observer to make com-
parative judgments about the angles, arcs, and/or sizes of
the various wedges within the circular diagram. In contrast,
a dot plot only involves comparisons of point locations along
a common scale. Cleveland and McGill (1984) show that the
latter task is usually carried out much more accurately than
the former.

With bar charts, a different problem emerges. A bar
chart should be interpreted using the relative heights (or
widths) of the bars along a common scale. But, Cleveland
(1984) argues that bar charts actually encourage observers
to make judgments based upon the relative sizes of the bars
within the display. And, if the scale in the bar chart begins
at some arbitrary value, then it is inappropriate to regard
the lengths and/or areas of the bars as any sort of meaning-
ful information about the relative magnitudes of the quan-
titative values being displayed in the chart.

A properly-constructed dot plot avoids these prob-
lems by either extending the horizontal reference lines across
the entire width of the plotting region (as in Figures 1 and
3) or omitting them entirely (as in Figure 4). In either
case, the display provides no visual cues that would encour-
age inappropriate judgments about the relative sizes of the
data values. If magnitude judgments are appropriate for the
data, then the reference lines in a dot plot can be extended
from the origin of the scale out to the plotted data values

(as in Figure 2).

A third potential advantage emerges when a dot plot
is used to display the distribution of values on a single vari-
able. As explained earlier, such a display can be viewed as
a transposed quantile plot. It shows all of the data and,
therefore, provides a particularly accurate depiction of dis-
tributional shape. Just as with a quantile plot, a dot plot
avoids potential distortions that may be introduced by the
binning process required to construct a more traditional his-
togram.

Creating Dot Plots in R

Most statistical software can be used to generate dot
plots. STATA, SPSS, and SYSTAT all have routines that
are either explicitly designed, or easily adapted, for this
purpose. Friendly (1991) provides macros that create dot
plots in SAS. But, as is often the case, R provides the most
powerful facility and flexibility for constructing this kind of
graphical display (R Development Core Team 2006). In the
discussion below, I will focus on the dotplot function in the
lattice package (Sarkar 2006). Note, however, that most
of the displays could also be produced with the dotchart

function of the traditional R graphics system.

General Principles
In order to produce a dot plot of values stored in

variable x, with labels in variable y, and both x and y con-
tained in an R data frame called dataset, one could use the
following R commands:

> library(lattice)

> dotplot(y ~ x, data = dataset, other optional arguments)

The first statement loads the lattice package. The sec-
ond statement calls the dotplot function. Since the re-
sults of the function call are not assigned to an object, they
are listed on the current output device (probably a window
in the screen display). The only required argument in the
dotplot function is y ~ x. This is actually a simple for-
mula in the R modeling language; it will produce a dot plot
with the labels from y listed along the vertical axis, and cor-
responding points located at the proper horizontal location
according to their respective x values. The data argument
is optional, but, it is very convenient specifying the data
frame containing x and y.

Before proceeding to specific examples, it is useful to
consider several general principles about the lattice pack-
age and the dotplot function. First, trellis graphs (i.e., the
type produced by the lattice package) are created by is-
suing a general display function which, in turn, calls a panel
function. The general display function sets up the exterior
components of the graph (i.e., axes, scales, titles, and so
on) while the panel function deals with everything within
the plotting region, itself (i.e., points, reference lines, etc.).

The Political Methodologist, vol. 14, no. 1 9

In the present context, general display function dotplot

calls panel function panel.dotplot. Distinguishing be-
tween these two components is important for specifying non-
default parameter values in a graph (e.g., axis labels, plot-
ting symbols, line characteristics, and so on).

Second, the lattice package effectively regards a dot
plot as a scatterplot between a categorical variable (or a fac-
tor in R nomenclature) and a quantitative variable (a vector
in R-speak). It is very useful to keep this in mind when try-
ing to produce non-standard displays and also when trying
to understand why the dotplot function sometimes pro-
duces strange and unexpected results!

Third, R defaults to an alphabetical ordering of the
levels (i.e., the unique values) within a factor. This is usually
problematic for dot plots because data values are typically
random with respect to such an arrangement. Therefore,
the plotted points in a dot plot created with an alphabetized
factor would look like a shapeless “cloud.” In order to pre-
vent this from occurring, it is usually necessary to change
the order of the factor’s levels before calling the dotplot

function. Given the factor, y and the quantitative variable,
x (both contained in the data frame called dataset), the
reorder function can be used to sort the factor’s levels so
that they are ordered according to the values of the variable:

> dataset$y <- reorder(dataset$y, dataset$x)

Note the use of the fully-qualified names (i.e., for each vari-
able, the data frame is given first, followed by the dollar sign
and the variable name) in the preceding R command. This
is necessary in order to direct R to the proper data frame
and also to guarantee that the newly-sorted factor is added
to that data frame (thereby replacing the original version of
factor y), rather than left as a separate object.

R Commands for Specific Examples

Let us begin by reproducing the dot plot shown back
in Figure 1. The data are contained in an R data frame
called policy, which contains two variables: state and pri-
ority for the state names and policy priority scores, respec-
tively. Figure 1 is created with the following statements:

> policy$state <- reorder(policy$state, policy$priority)

> dotplot(state ~ priority, data = policy,

+ aspect = 1.5,

+ xlab = "State policy priority scores, 1992",

+ scales = list(cex = .6),

+ panel = function (x, y) {

+ panel.dotplot(x, y, col = "black", lty = 2)})

The first statement sorts the levels of the factor,
state, by the values of the vector, priority. The second
statement (which extends across six lines) calls the dotplot
function. The first line of the function should be self-
explanatory. The next three lines contain arguments that

are part of the general display function. First, aspect sets
the aspect ratio, so that the height of the graph is one and
one-half times the size of the width (the default is an aspect
ratio of 1.0). Next, xlab provides a label for the horizontal
axis (the default is the variable name, which is often un-
informative to readers). The scales argument provides a
list; in this case, the list only contains a single element which
uses the cex argument to set the size of the tick labels on
the axes to 60% of their default size (otherwise, the state
names would collide along the vertical axis).

The panel argument explicitly creates the panel
function for this graph, by modifying the default elements
of panel.dotplot. In this panel function, “x” and “y” are
the horizontal and vertical axis variables in the dotplot (i.e.,
priority and state, respectively)— they are passed to the
panel function from the general display function. The col

argument sets the color of the plotting symbols (the default
color is blue) and the lty argument (for “line type”) spec-
ifies dashed horizontal lines, rather than the default lines
(which are solid).

In fact, panel.dotplot actually calls two further
panel functions: panel.xyplot to control the plotting sym-
bols and panel.abline to control the reference lines. So, we
could bypass panel.dotplot entirely and use the following
function call to produce Figure 1:

> dotplot(state ~ priority, data = policy,

+ aspect = 1.5,

+ xlab = "State policy priority scores, 1992",

+ scales = list(cex = .65),

+ panel = function (x, y) {

+ panel.abline(h = as.numeric(y),

+ col = "gray", lty = 2)

+ panel.xyplot(x, as.numeric(y),

+ col = "black", pch =16)})

Here, “as numeric(y)” appears as an argument to both
panel.xyplot and panel.abline. This specification co-
erces the vertical-axis variable into a numeric vector; the
result is the ordering of the factor’s levels. This enables
panel.xyplot to treat the graph as a simple scatterplot.
And, in panel.abline, the “h = as.numeric(y)” instruc-
tion places a horizontal line at each distinct location along
the vertical axis. The remaining arguments in the panel
functions should be fairly obvious.

In recreating Figure 1, the explicit use of the panel
functions was not really necessary. Instead, the col and
lty arguments simply could have been included as part of
the dotplot general display function; in that case, dotplot
would pass them along to the panel function when it is im-
plicitly (but invisibly) called to construct the plotting region
of the display. However, there are many situations where
explicit use of the panel function is necessary in order to
modify the default specifications of the dotplot function.

For example, assume that we want to construct a

10 The Political Methodologist, vol. 14, no. 1

dot plot of a ratio-level variable, with horizontal reference
lines that only extend from the origin to the plotted points.
This is problematic, because panel.dotplot creates lines
that extend across the entire width of the plotting region.
The easiest way to change this is to modify the panel func-
tions. To show how this is done, we will recreate the display
from Figure 2. The data are contained in an R data frame
called spending which contains the factor state and the vec-
tor educ.per.cap. The former are the state names, and the
latter are the 2000 education expenditures from each state.
The following R statements produce the dot plot in Figure
2:

> spending$state <-

+ reorder(spending$state, spending$educ.per.cap)

> dotplot(state ~ educ.per.cap, data = spending,

+ aspect = 1.5,

+ scales = list(cex = .65),

+ xlim = c(-100, 2300),

+ xlab = "State education spending, fiscal year 2000",

+ panel = function (x, y) {

+ panel.segments(rep(0, length(x)), as.numeric(y),

+ x, as.numeric(y), lty = 2, col = "gray")

+ panel.xyplot(x, as.numeric(y), pch = 16, col = "black")})

Once again, the first statement sorts the levels of the factor
(state in this case) by the values of the quantitative vector
(here, educ.per.cap). In the call to dotplot, the xlim ar-
gument specifies the range of values for the horizontal axis.
Here, the minimum is set to -100 in order to provide a small
margin to the left of the reference lines within the plotting
region.

Turning to the panel function, the first two argu-
ments to panel.segments are vectors containing the hori-
zontal and vertical coordinates of the starting positions for
the line segments. The rep function creates a vector of ze-
roes. The size of this vector is equal to the number of values
being plotted (i.e., “length(x)”). So, this vector contains
the horizontal coordinate for the starting point of each ob-
servation’s line segment (i.e., they all begin at zero). The
third and fourth arguments to panel.segments are vectors
containing the coordinates of the terminal points for the line
segments. The horizontal coordinate of the terminal point
for each observation is simply the value of the variable being
plotted (i.e., x). The vertical coordinates for the initial and
terminal points of the line segments are both supplied by
“as.numeric(y)”.

Next, panel.xyplot plots the data points, them-
selves. Once again, the function replaces “x” and “y” with
the actual variable names, which are passed from the gen-
eral display function. The “pch = 16” specification sets the
plotting symbol to a solid circle. The remaining arguments
in both the general display function and the panel function
should be self-explanatory.

Next, we will recreate the divided dot plot shown
back in Figure 3. Producing this kind of display with the

dotplot function is a bit tricky and it involves as much
work in preparing the dataset as it does in specifying the
function. The data are contained in a data frame called re-
gions; the contents of the text file used to create this data
frame are shown in Table 1. The first line is a header record,
giving the variable names. The observations are grouped by
region and, within each region, they are sorted by values of
the priority variable. Following the last observation for each
region, there is a “dummy” observation. In each one, the
value of state is the region name and the value of priority
is -9. The latter is an arbitrary, meaningless, value which
falls outside the actual range of the variable.

The first step in creating the divided dot plot is to fix
the order of the factor, state, to that shown in Table 1. This
can be accomplished by using the following R commands:

> regions$sequence <- seq(1, length(regions$priority))

> regions$state <- reorder(regions$state, regions$sequence)

This newly-ordered factor is employed as the vertical axis
variable in the dot plot, as follows:

> dotplot(state ~ priority, data = regions,

+ aspect = 1.5,

+ xlab = "State policy priority scores, 1992",

+ xlim = c(.49, .55),

+ scales = list(cex = .65),

+ panel =function (x, y) {

+ panel.dotplot(x[x > 0], y[x > 0],

+ pch= 16, col = "black", lty = 2)})

Most elements of the preceding function should be famil-
iar to the reader. The only new technique is the use of
logical conditions within the square brackets following the
x and y variables specified in panel.dotplot. The panel
function will only carry out the plotting tasks for those ob-
servations where the condition is true. Since the region la-
bels were given values of -9 on the priority variable (i.e., x
in panel.dotplot), the condition is false for those obser-
vations. Therefore, no horizontal lines or data points are
plotted in those cases.

The panel function only affects the interior of the
plotting region. Therefore, all 52 levels of the factor, state
(i.e., the 48 state names plus the four region names), still
appear along the vertical axis (which is, of course, outside
the plotting region). In this case, it is important to specify
the xlim argument so that it just contains the legitimate
values of the priority variable. Otherwise, the general dis-
play function for dotplot would regard the nonsense value,
-9, as the minimum value of priority for purposes of con-
structing the horizontal axis.

As our final example, we will examine the R com-
mands used to create Figure 4, the dot plot of ten sample
means with error bars representing confidence intervals. R
makes it very easy to pass information from a statistical
analysis over to a graphing function, with a minimum of
manual copying or cutting-and-pasting. Assume that the

T
h
e

P
o
litica

l
M

e
th

o
d
o
lo

g
ist,

vo
l.

1
4
,
n
o
.

1
11

Figure 1: 1992 State Policy Priority Scores Figure 2: State Education Spending, 2000 (in dollars per capita)

Data Source: State Government Finances.

12
T

h
e

P
o
litica

l
M

e
th

o
d
o
lo

g
ist,

vo
l.

1
4
,
n
o
.

1

Figure 3: 1992 State Policy Priority Scores, by Region

Data Source: Jacoby and Schneider (2001).

Figure 4: Mean Issue Importance Ratings, 2004

Note: Error Bars Represent 95% Confidence Intervals
Around the Respective Mean Values. Data from the CPS
National Election Study.

The Political Methodologist, vol. 14, no. 1 13

raw data used to calculate the statistics plotted in Figure 4
are contained in a data frame, import.2004, with 1212 rows
(i.e., the sample size for the 2004 NES) and ten columns
(one for each of the importance ratings). The task is com-
plicated a bit by the presence of missing values (coded as
NA’s) within the data. Descriptive labels for the ten vari-
ables in import.2004 are contained in the separate vector,
var.labels. The means and confidence intervals for the dot
plot are created with the following statements:

> sample.means <- mean(import.2004, na.rm = T)

> std.devs <- sd(import.2004, na.rm = T)

> sample.ns <- apply(!is.na(import.2004), 2, sum)

> std.errs <- std.devs / (sample.ns ^ .5)

> lower <- sample.means +

+ (std.errs * qt(.025, (sample.ns - 1)))

> upper <- sample.means +

+ (std.errs * qt(.975, (sample.ns - 1)))

> new.data <- data.frame(var.labels,

+ sample.means, lower, upper)

> new.data$var.labels <- reorder(new.data$var.labels,

+ new.data$sample.means)

The first two statements use R’s statistical functions to cal-
culate the column means and standard deviations from data
frame import.2004 ; in each case, the result is a ten-element
vector. The next statement determines the number of non-
missing observations within each column. The ten-element
sample.ns vector is created by using the apply function to
sum within the columns of a logical matrix created by the
argument “!is.na(import.2004)”. The latter matrix is
the same size as import.2004. It has value TRUE in the
cells that correspond to nonmissing data in import.2004,
and FALSE in the cells that correspond to missing data.
Now, TRUE evaluates to one and FALSE to zero in the sum
function). So, summing within the columns of this logical
matrix produces the number of nonmissing values on each
of the ten variables.

The std.errs vector contains the standard errors of
the sample means, created by dividing the elements of the
std.devs vector by the square roots of the elements in the
sample.ns vector. The lower and upper bounds of the con-
fidence intervals for the respective means are obtained by
adding the product of the standard errors and the appropri-
ate t values (obtained using the qt function) to the means.
Next, the data.frame function concatenates the vectors of
variable labels, sample means, and the limits of the con-
fidence intervals into a new data frame, called new.data.
Finally, the levels of the factor var.labels are ordered ac-
cording to the sample means, using the reorder function.
The display in Figure 4 is produced by the following call to
dotplot:

> dotplot(var.labels ~ sample.means, data = new.data,

+ aspect = 1.5,

+ xlim = c(3.3, 4.3),

+ xlab = "Mean importance rating",

+ panel = function (x, y) {

+ panel.xyplot(x,y, pch = 16, col = "black")

+ panel.segments(new.data$lower,as.numeric(y),

+ new.data$upper, as.numeric(y),

+ lty = 1, col ="black")})

Once again, we use panel.xyplot rather than
panel.dotplot in order to eliminate the horizontal ref-
erence lines. The panel.segments function draws the error
bars using the variables lower and upper as the horizontal
coordinates for the ends of the line segments. Note that the
fully-qualified variable names must be specified, since the
general display function does not pass the name of the data
frame from the data argument to the panel function.

Further Resources and Conclusions

Hopefully, the examples presented above will help
readers use the R statistical computing environment in or-
der to generate not only basic dot plots, but also more com-
plex versions of this graphical display. As with any set of
specific examples, those provided here only scratch the sur-
face of a potentially vast subject. For that reason, further
documentation would be very helpful. As a starting point,
there are a number of relevant materials on my own web
site, including a longer version of this article, a number of
datasets, and R scripts to produce not only the dot plots
discussed here but also many others as well. The URL is:
http://polisci.msu.edu/jacoby/.

More generally, the most convenient source of in-
formation is the R online help system. However, many
users find the help files for lattice functions to be a bit
terse. As a more user-friendly alternative, the S-Plus Trellis
Graphics User’s Manual is an excellent guide to the entire
trellis system and its general usage. Another extremely
helpful source of information is “A Tour of Trellis Graph-
ics,” by Richard A. Becker, William S. Cleveland, Ming-
Jen Shyu, and Stephen P. Kaluzny. This paper expands
upon the basic information provided in the User’s Manual
and provides detailed examples illustrating how to create
and modify trellis graphs. While these documents were
written for the trellis graphics system in the commercially-
available S-Plus computing environment, virtually all of
their content applies directly to the lattice package in R,
as well. Both are available on the Trellis Display web site:
http://cm.bell-labs.com/cm/ms/departments/sia/project/trellis/.

I have also included copies of these two documents
on my own web site. Still another source of information is
the book, R Graphics, by Paul Murrell. This is a general
reference work which provides comprehensive and readily-
accessible treatment of both the traditional and the grid
(which contains the lattice package) graphics systems in
R. Finally, John Fox’s book, An R and S-Plus Companion
to Applied Regression, provides an enormous amount of in-
formation and advice about working with the statistical and

14 The Political Methodologist, vol. 14, no. 1

graphics functions in R.

In conclusion, dot plots are excellent graphical dis-
plays for labeled quantitative data values. They contain a
great deal of information, are easy to interpret, and over-
come a number of the problems associated with other kinds
of displays. Dot plots are also extremely flexible; they can
be modified in various ways to handle many different data
analysis situations. They are useful both for analytic pur-
poses (to paraphrase Tukey, they show the researcher fea-
tures that he/she never expected to see) and for presenta-
tional displays (i.e., they guide the observer to perceive the
researcher’s conceptions of the most important features in
the data). For all of these reasons, dot plots (along with the
requisite programming knowledge to create them) constitute
a very useful addition to the methodologist’s ”toolbox.”

Listing of text file used to create the R data frame,
called regions, used to construct Figure 3

state priority
MA 0.49743
NH 0.50099
NY 0.50354
CT 0.50994
PA 0.51171
RI 0.51269
ME 0.51679
MD 0.51781
NJ 0.51831
VT 0.53162
"Northeast: " -9
MI 0.51292
IL 0.51722
OH 0.51886
WI 0.52052
MO 0.52275
MN 0.52350
IN 0.52577
NE 0.52595
SD 0.53037
IA 0.53099
KS 0.53370
ND 0.53553
"Midwest: " -9
TN 0.51585
LA 0.51896
GA 0.52019
SC 0.52024
AL 0.52193
TX 0.52337
FL 0.52503
MS 0.52667
KY 0.52691
VA 0.52825
AR 0.52905
OK 0.52937
NC 0.52970
WV 0.53118
DE 0.53475
"South: " -9
CA 0.51385
HA 0.52196
OR 0.52400
AZ 0.52724
WA 0.52900
CO 0.52970
NM 0.53291
UT 0.53557
NV 0.53668
AK 0.53774
MT 0.53969
ID 0.54230
WY 0.54669
"West: " -9

References

Becker, Richard A.; William S. Cleveland; David A.

James. (1996) S-Plus Trellis Graphics User’s Manual

(Trellis Versions 2.0 & 2.1). Seattle, WA: MathSoft,

Inc.

Becker, Richard A.; William S. Cleveland; Ming-Jen

Shyu; Stephen P. Kaluzny. (1996) “A Tour of Trellis

Graphics.” Unpublished manuscript.

Cleveland, William S. (1984) “Graphical Methods for

Data Presentation: Full Scale Breaks, Dot Charts,

and Multibased Logging.” American Statistician 38:

270-280.

Cleveland, William S. (1993) Visualizing Data. Summit,

NJ: Hobart Press.

Cleveland, William S. (1994) The Elements of Graphing

Data (Revised Edition). Summit, NJ: Hobart Press.

Cleveland, William S. and Robert McGill. (1984)

“Graphical Perception: Theory, Experimentation,

and Application to the Development of Graphical

Methods.” Journal of the American Statistical

Association 79: 531-553.

Fox, John. (2002) An R and S-Plus Companion to

Applied Regression. Thousand Oaks, CA: Sage.

Friendly, Michael. (1991) SAS System for Statistical

Graphics. Cary, NC: SAS Institute.

Jacoby, William G. (1997) Statistical Graphics for

Univariate and Bivariate Data. Thousand Oaks, CA:

Sage.

Jacoby, William G. and Saundra K. Schneider. (2001)

“Variability in State Policy Priorities: An Empirical

Analysis.” Journal of Politics 63: 544-568.

Murrell, Paul. (2006) R Graphics. Boca Rotan, FL:

Chapman & Hall/CRC.

R Development Core Team (2006). “R: A Language and

Environment for Statistical Computing.” Vienna,

Austria: R Foundation for Statistical Computing.

Sarkar, Deepayan. (2006). “lattice: Lattice Graphics.”

R Package, Version 0.13-8.

The Political Methodologist, vol. 14, no. 1 15

The Art of Benchmarking: Evaluating the Performance of R on Linux and OS X

Jasjeet S. Sekhon
UC Berkeley
sekhon@berkeley.edu

With the growing use of computational statistical
methods which tax even today’s powerful computer chips,
it is of interest how various applications perform on modern
operating systems.1 Of course, there is more to picking an
operating system than speed (e.g., ease of administration,
viruses, and most importantly applications). But speed is
key especially when purchasing servers and clusters which
many of us are doing. How various statistical packages per-
form is also an important consideration. For example, is
Matlab generally faster than R (“yes”) and are both faster
than Stata (“yes”)? But since much of the statistics and
political methodology community has coordinated on R, I
focus on it and examine how efficiently it runs on various
operating systems.

The short summary is that for some key operations
Linux is faster than Windows XP and both are faster than
OS X unless the default OS X memory allocator is replaced.
In fairness to OS X, the Windows XP version of R already
uses a modified memory allocator instead of the system de-
fault. Although some Windows benchmarks are presented
here, the focus is on Linux and OS X benchmarks because
few if any methods people (I don’t know of any!) would run
computational servers with Windows.

Modern computers and operating systems are so
complex and the tasks they are ask to perform so variable
that there is no single measure or test of overall perfor-
mance. Such a measure of performance is even more elu-
sive than g—the general intelligence factor. Therefore, it
is of utmost importance when conducting benchmarks that
they be as closely related as possible to the computations
one will perform with production code. If R is the appli-
cation whose performance one cares about most, relying on
benchmarks from seemingly closely related tasks such as
video encoding can often lead to erroneous inferences even
though both tasks are floating-point intensive.2 Even within
R, on should benchmark the code one is actually going to
be using. For example, if one going to be running Match-
ing estimators using a given algorithm, then it is best to
run benchmarks as similar to this usage scenario as possi-

ble. The relative performance of various operating systems
or computer chips when inverting matrices may be different
than the relative performance when sorting the contents of
a matrix even though both tasks are done in R and use
the same data. The different tasks may, for example, have
different memory requirements.

The difficulty of understanding and separating out
what is happening on a computer is a cautionary tale re-
garding the difficulty of making inferences in general. Mod-
ern computers, which are Turing machines, are determinis-
tic systems. There is nothing stochastic about them, and
there are no unobservable factors at play. For example, even
the “random” number generators most statistical software
rely on are generated by deterministic algorithms such as
the Tausworthe-Lewis-Payne generator (Bratley, Fox and
Schrage 1983) which is one of the better ones currently
available—it is, for example, used by rgenoud.3 Notwith-
standing these deterministic properties, it is difficult to de-
termine why a certain algorithm performs better on one op-
erating system than another. To make our inferential task
easier, I try to limit the number of factors in play by us-
ing exactly the same hardware for each operating system.
Thanks to Apple’s switch to Intel chips, this matching ex-
ercise is now straightforward to do. Back when Apple was
still using PowerPC chips, comparisons between OS X and
Windows were more difficult to conduct, and for any given
benchmark Apple or Microsoft could blame the chip instead
of the operating system or claim that a given application was
tuned to one particular chip or another.4

All benchmarks are conducted on what is at the
time of this writing, Apple’s fastest Intel hardware: a Mac-
BookPro with Intel Duo (2.16GHz) and 2GB of RAM and
120GB hard disk. This machine has two CPU cores, but all
of the presented benchmarks only use one of the cores.

Given that one should benchmark the algorithm one
will actually be using, benchmarks are based on my Match-
ing package for R (Sekhon 2006).5 The package provides
functions for multivariate and propensity score matching
and for finding optimal balance based on a genetic search

1I thank Nate Begeman of Apple for software optimizations and Michael Herron for helpful suggestions.
2Floating-point numbers are the way that a subset of real numbers are represented on a modern computer. Such numbers consist of an integer

exponent and a signifcand which consists of the significant digits of the number. On a computer, floating-point operations are handled differently
than integer operations and different chips may be better at one than the other. For example, the latest generation AMD Opteron chips generally
have better floating-point performance than Intel x86 chips, but the latter have better integer performance.

3rgenoud is an R package for Genetic Optimization Using Derivatives and it is used below. See http://sekhon.berkeley.edu/rgenoud.
4On a more mundane level, the same deterministic random number generator will produce different “random” numbers on different chips because

of architectural differences. There are obvious ways around this issue, but this issue and many others like it complicate benchmarking across chips.
5See http://sekhon.berkeley.edu/matching

16 The Political Methodologist, vol. 14, no. 1

algorithm. A variety of univariate and multivariate tests to
determine if balance has been obtained are also provided.
The most computationally intensive part of the package is
the GenMatch function which finds optimal balance using
multivariate matching where a genetic search algorithm de-
termines the weight each covariate is given (Sekhon 2006,
Diamond and Sekhon 2005). Because the genetic algorithm
calls the matching function many, many times, a great deal
of time has been spent optimizing the matching procedure
itself. Indeed, after I had posted earlier benchmarks on my
website which looked particularly poor for OS X, program-
mers at Apple, include members of Apple’s OS X Perfor-
mance Group, helped optimize my code. After these and
other optimizations, my matching algorithm—implemented
in the Match function—is the fastest I know of in any lan-
guage. The computationally intensive portion of the code
is written in C++, and key matrix operations are handled
by the BLAS libraries.6 So any benchmark using this algo-
rithm becomes a benchmark of floating-point performance,
the system BLAS implementation, compiler performance,
and operating system memory management.7 In order to
eliminate the possibility of these factors confounding our re-
sults, we match on all of the non-operating system factors.
The same BLAS implementation is used for both Linux and
OS X as well as the same compiler (gcc) and optimization
flags. And since we are using the same computer, the CPU’s
floating-point unit, cache and other hardware components
are identical in all simulations. We are then left with differ-
ing operating systems.

Linux versus Mac OS X on Intel Dual
Core

In early May I posted on my website benchmarks comparing
Linux and OS X (I later added Windows XP benchmarks).8

In one of the original benchmarks, both Linux and Win-
dows XP were more than twice as fast as OS X. And in a
second (more representative) benchmark, Linux was about
20% faster than OS X. The benchmarks were posted on Digg
(http://digg.com) and a variety of other high traffic Inter-
net websites such as OSnews (http://OSnews.com). This
attention generated a lot of comments and suggestions.

With the help of a variety of developers working at
Apple and elsewhere, the large OS X performance gap previ-
ously reported was significantly reduced. The most impor-

tant improvement is the use of a more efficient algorithm
which relies on optimized BLAS to perform key matrix op-
erations. This change increased the performance of the code
on all platforms. The performance gap was further closed by
compiling and linking R on OS X against Doug Lea’s malloc
(called dmalloc for short). Malloc is a function which allo-
cates memory for an object (such as a variable or matrix)
requested by a program, in this case R.

However, a Linux speed advantage remains which
varies with dataset size. For example, the gap ranges from
0% for a small dataset to 10% for what is a medium size
dataset for the algorithm in question. The gap shrinks again
to 0% for a larger dataset. The performance gap is much
greater if the default OS X malloc is used notwithstanding
the new algorithm: the gap goes from essentially zero for a
small dataset, to 40% for a medium one, and up to 50% for
a large one. Therefore, I recommend that the OS X version
of R be compiled so that memory is handled by dmalloc
instead of the default OS X malloc. R for OS X should be
linked against dmalloc just as it is for Windows.

The default malloc on OS X, like the default malloc
on Windows XP, causes a large performance degradation
relative to the default malloc on Linux. R developers use
the default system malloc on every operating system but
Windows. It turns out that this decision is a bad one in the
case of OS X because OS X makes more frequent system
calls when allocating memory. A system call when allocat-
ing memory is done so that the kernel can allocate and clean
up memory. This helps with memory defragmentation and
insures that free memory is recovered by the operating sys-
tem so it can be used by other processes. However, all of this
comes at a cost. Not only do these system calls take time,
they also cause page faults. These occurs when a program
requests data that is not currently in real memory. The op-
erating system then fetches the data from virtual memory
and loads it into RAM. Therefore, it is much faster for the
application to not call the kernel and simply manage mem-
ory itself. The downside of this is that the operating system
will generally run out of memory more quickly. The thresh-
old at which different memory allocators turn memory allo-
cation over to the kernel varies greatly. A key performance
issue arises because OS X makes system calls for allocations
of 15 kilobytes (KB) and larger while, for example, the cur-
rent version of dmalloc makes system calls for allocations of
256KB and larger.9

To make matters worse, unlike on Linux, this thresh-

6The BLAS (Basic Linear Algebra Subprograms) are routines for performing basic vector and matrix operations. They provide a consistent
programming interface across hardware specific implementations.

7The same BLAS implementation was used for all of the benchmarks, ATLAS (non-threaded). The OS X vecLib Framework is based on the
ATLAS BLAS. Goto’s BLAS are currently the fastest, but at the time these benchmarks were run they were not available for x86 OS X. I have
since helped Goto produce a beta patch for x86 OS X.

8http://sekhon.berkeley/macosx
9One KB is equal to 210 = 1024 byes. Dmalloc’s threshold used to be 128KB but it was increased to 256KB as computers have changed—compare

version 2.6.6 with 2.8.3.

The Political Methodologist, vol. 14, no. 1 17

Figure 1: Benchmark Comparison

445 890 1780 5340

Observations (N)

S
ec

on
ds

N
2 lo

g(
N

)

0
 e

+
00

4
 e

−
06

8
 e

−
06

4.6 4.4 4.4 20.1
18.3

16.5

196

152
140

2127

1432 1429

OS X, Standard malloc
OS X, Lea’s malloc
Linux

Entries above bars are gross processing seconds. Scaling factor for the y-axis is the average asymptotic order of the algorithm
which is O(N2log(N)). Asymptotically, the dominating factor is quicksort which is applied N times, and the average order
of quicksort is O(Nlog(N)).

old is not changeable by the user. On Linux, it is com-
mon practice in high performance computing to completely
avoid calls to the kernel when allocating memory for the
computationally intensive process.10 On Linux, which uses
the GNU malloc, calls to the kernel (via the mmap func-
tion) can be avoided completely by setting two runtime en-
vironmental variables: MALLOC TRIM THRESHOLD to
-1 and MALLOC MMAP MAX to 0. It is unfortunate that
it is not possible to do something similar with OS X’s de-
fault malloc because it would help alleviate the performance
issue. Therefore, one has to use an alternative memory al-
locator on OS X.

Picking what the threshold should be for a memory
allocator to allow the kernel to allocate memory is an art.
There is no generally optimal solution. An issue which arose
with OS X was that professional video and graphics users
were running out of allocatable memory, thus the current
OS X memory allocator minimizes the amount of memory
used—i.e., it needs to aggressively recover freed memory
and optimally allocate memory pages. This was an issue be-
cause OS X only assigns 2GB of memory space to processes
regardless of the amount of physical memory in a computer.
Linux does not have this limitation. Therefore the current

OS X memory allocator was written to minimize memory
usage even if that means that much smaller memory allo-
cations are handled by the OS X kernel than by the Linux
kernel.

The Benchmarks

As noted above, the benchmarks are based on my Match-
ing package for R (Sekhon 2006). The benchmark scripts
only vary by the sample size of the dataset being examined.
The data sizes are: 445, 890, 1780 and 5340 observations.11

Each script runs the benchmark three times and the best
runtime of the three is recorded. Each script is executed
1000 times and the average times are reported below. The
setup is outlined in Table 1.

Figure 1 presents the results for the benchmarks. For
the first benchmark, there is only a small difference between
Linux and OS X with the default malloc and no difference
when dmalloc is used. This is the benchmark which was
used to optimize the software on OS X by Apple’s OS X
Performance group. The difference between Linux and OS
X default malloc is small but statistically significant—the
p-value based on the empirical distribution over 1000 simu-

10For example, see the following documentation from Lawrence Livermore National Laboratory http://www.llnl.gov/LCdocs/linux/index.jsp?show=s7.
11Each script runs the benchmark three times and the best runtime of the three is recorded. Each script is executed 1000 times and

the average times are reported below. The scripts are available on my website. 445: http://sekhon.berkeley.edu/macosx/GenMatch.R,
890: http://sekhon.berkeley.edu/macosx/GenMatch2.R, 1780: http://sekhon.berkeley.edu/macosx/GenMatch3.R, and 5340:
http://sekhon.berkeley.edu/macosx/GenMatch5.R.

18 The Political Methodologist, vol. 14, no. 1

lations is 0.09.

The results for this benchmark with the new code
are in sharp contrast to the original results (which were
obtained using exactly this script), but which used an al-
gorithm which was not as optimized—e.g., it did not make
use of the BLAS libraries. In the original benchmark, Linux
took 8.84 seconds, Windows XP 9.38 seconds and OS X
(with the default malloc) 22.78 seconds! Clearly the code
improvements have speed up the code on all operating sys-
tems (on Linux from 8.84 seconds to 4.4), but the improve-
ment for OS X has been tremendous: from 22.78 seconds to
4.6!

However, even with the new algorithm, as we increase
the sample, differences begin to become more pronounced.
With 890 observations, Linux is now 20% faster than de-
fault OS X (p-value=0.00) and 10% faster than OS X with
dmalloc (p-value=0.00).

For 1780 observations, there is some evidence that
the difference between Linux and OS X with dmalloc is ei-
ther asymptoting at about 10% or possibly even shrinking—
from 1.11 times as slow as Linux in the previous benchmark
to 1.08 times as slow now. The next simulation will help to
nail this down. In any case, the gap between Linux and the
default OS X malloc version has doubled and OS X is now
about 1.4 times slower than Linux.

In an attempt to answer the asymptoting vs shrink-
ing gap question, a benchmark was run with 5340 observa-
tions (12 times the original dataset). The Linux advantage
over OS X using dmalloc was only present for a given range
of dataset size and with 5340 observations it has disappeared
once again. But the gap between default OS X and Linux
continues to grow.

Why exactly there remains a gap for some dataset
sizes between the OS X dmalloc and the Linux results is
not clear. One way to try to answer the question is to use
Shark which allows one to see what functions an applica-
tion is spending its time in.12 With the default OS X mal-
loc, Shark is able to quickly show that the process, in this
case the 5240 observations benchmarks, is spending a lot of
time calling a system library.13 However, with dmalloc, it

is not clear why OS X is slower than Linux for some sample
sizes. No system call jumps out, so a mystery remains which
further analysis would no doubt clear up.14

Conclusion

This brief report gives a flavor of how to conduct software
benchmarks. It is striking how even though everything a
computer does is deterministic and observable, the experi-
mental method is still essential for making inferences. Meth-
ods like those proposed by qualitative researchers for mak-
ing inferences with deterministic systems are not used in
the literature. When benchmarking, it is common to match
on (and hence eliminate) as many confounders as possible
and to report measures of uncertainty. Since computers are
deterministic, the remaining uncertainty must come from
confounders. For example, when conducting these bench-
marks, I tried to stop as many daemons as possible.15 But
background tasks, such as those related to the graphics sys-
tem whether it be X11 or Quartz, will still take up CPU
resources at times the analyst does not predict.

References

Bratley, P., B.L. Fox and L.E. Scrage. 1983. A Guide to

Simulation. New York: Springer-Verlag.

Diamond, Alexis and Jasjeet S. Sekhon. 2005. “Genetic

Matching for Estimating Causal Effects: A General

Multivariate Matching Method for Achieving

Balance in Observational Studies.” See

http://sekhon.berkeley.edu/papers/GenMatch.pdf.

Sekhon, Jasjeet S. 2006. “Matching: Algorithms and

Software for Multivariate and Propensity Score

Matching with Balance Optimization via Genetic

Search.” See

http://sekhon.berkeley.edu/matching.

12For information about Shark see http://developer.apple.com/tools/sharkoptimize.html.
13About 12% of the runtime is spent in ’match msg trap’ which is a symbol in the libSystem.B.dylib library. The only other libSystem calls

taking more than 1% are ’ isnand’ (1.4%) and ’dyld stub isnand’ (1.3%). ’malloc’ itself is reported to take up (directly) 0.0% of the runtime—so
calls to it are being accounted elsewhere.

14With dmalloc the only libSystem calls which take up greater than 1% of the time are ’ inand’ (2.5%), ’dyld stub isnand’ (2.5%) and ’syscall’
(1.2%). ’ mmap’ takes up 0.3% of the runtime and ’malloc’ 0.4%. Does the large amount of time spent in ’mach msg trap’ indicate that XNU
kernel is spending a lot of time message passing as it is often accused of or is this simply how Shark is reporting the kernel’s default virtual memory
manager?

15A daemon is a background process which handles services as automatic disk mounting and printing.

The Political Methodologist, vol. 14, no. 1 19

Table 1: Operating System and Computer

Label OS and Chip

OS X Standard malloc Tiger on MacBookpro, Intel 2.16GHz Dual Core 2GB RAM

OS X Lea’s malloc Same as above but with dmalloc

Linux Ubuntu Linux (Drapper Drake) with i686-SMP kernel on MacBookpro,
Intel 2.16GHz Dual Core 2GB RAM
Note: Xorg server running with GNOME

The LATEXCorner

PowerPointTM for LATEX: The beamer Class

Ian Yohai
Harvard University
yohai@fas.harvard.edu

Many of the readers of The Political Methodologist
are undoubtedly already sold on the benefits of LATEX as
a word processing program. The ease with which LATEX
handles complicated mathematical expressions, figures and
tables, references, and any number of other tasks is a strong
incentive for those presenting quantitative material to break
free of the point and click structure of, shall we say, other
popular programs. But in an age where lectures and confer-
ence presentations seem dominated by a constant stream of
PowerPointTMslides, there finally exists a LATEX alternative
that can compete. While other presentation programs for
LATEX such as Prosper and PPower4 have existed for some
time, the beamer1 class offers a dizzying array of options
designed not only to handle the π, Σ, and

∫
in your pre-

sentations seamlessly, but also to satisfy the needs of those
who want to spice up the aesthetics of their slides.

What Can BEAMER Do?
Perhaps most importantly, beamer can do just

about anything that LATEX can, in approximately the same
way. For example, the syntax to create formulas and tables,
incorporate figures, and bold or italicize particular portions
of text works in beamer just as it does in the standard
article class. The advantage of this for those who know
LATEX is clear: it is quite simple just to lift a table or formula
in a working paper and throw it into a beamer presenta-

tion. The downside, of course, is that familiarity with LATEX
is an absolute prerequisite for using beamer. But the good
news is that if you are already using LATEX for the bulk of
your word-processing, you have enough experience to adapt
to beamer pretty quickly.

beamer, however, offers quite a good deal more than
simple compatibility with LATEX. First, beamer comes
stocked with a number of canned “presentation themes,”
which control just about every feature of the slides (except
the substance, of course). The themes, which are named
for various cities like Madrid, Frankfurt, Ann Arbor, and so
on, set the color layout for the background, choose the font
size for headers and footers, and even pick the type of sym-
bol used for bullet points in itemized lists — be it a circle,
triangle, star or some other option. Given that beamer is
structured so that there are many choices for each one of
these “elements” of a presentation, it is quite handy to have
one theme specified at the beginning that controls most as-
pects of the layout.

Brave readers should have a look at the beamer

manual to get a feel for all the possibilities.2 It will soon be
obvious that the aforementioned presentation themes grow
quite rapidly in complexity. The relatively simple themes
just require a title for each slide. More advanced themes
allow the user to create something like a table of contents

1According to the beamer manual, the package was created by Till Tantau in 2003 for his Ph.D. defense. I have heard that the name beamer

derives from the German word for video projector, though I do not know all of the details.
2Available at http://www.ctan.org/tex-archive/macros/latex/contrib/beamer/doc/beameruserguide.pdf.

20 The Political Methodologist, vol. 14, no. 1

(TOC) that can appear either as a header or as a sidebar.
As the presentation progresses, the first section of the mov-
ing TOC dims out as the next section is highlighted. This
is useful to keep the audience (and the presenter!) informed
about what is to come next in the presentation. Some of the
most advanced themes jam so much information into head-
ers, footers, and sidebars that the main point of a slide can
often be lost. While I personally think that such themes de-
tract from the substance of talks, others may find them use-
ful to rigorously structure their presentations into sections
and subsections. Here again is an advantage of beamer.
There is a canned theme ready for just about everyone —
from those who only want a large title at the beginning of
each slide, to those who want a full blown navigation tree
of their presentation. And for the artistically inclined or for
those who are not satisfied with the canned themes, it is
possible to create your own custom theme.3

Beyond mere aesthetics, beamer also has a powerful
option for creating “overlays,” or pauses scattered through-
out a given slide. For example, one can use this feature to
show the audience one bullet point at a time (while con-
cealing the rest) or show some text first and then move to a
figure at the bottom of a slide. It is even possible to move
through a table row by row. This command is appropri-
ately called uncover. While uncover functions somewhat
similarly to the pause commands in PPower4, uncover can
actually do quite a bit more. It can be used to show mater-
ial at the top and bottom of the slide first, and then reveal
the middle section. While this might seem like a bit much,
it is quite useful in the class setting, where the instructor
wants to setup a problem and then reveal the answer after
the students have had a chance to offer their own solution.
Finally, uncover can be used to reveal sections of a flow di-
agram or schematic one at a time, no matter where on the
slide the particular elements of the figure happen to reside.

Although users will probably want to incorporate
overlays in their presentations, it is possible to produce a
version without the pauses, simply by using the [handout]

option in the preamble, while keeping everything else the
same. For long presentations like class lecture notes, this
option is useful if the instructor wants to post the entire set
on a website, so that students can print out the material
without having to scroll through all the pauses. You can
even create those PowerPointTM-like handouts with multi-
ple slides on a page.

Startup Costs
Learning all of the advanced features of beamer will

no doubt take several hours of frustration, but for someone
with a good deal of familiarity with LATEX it should be pos-

sible to create an elegant presentation after about 10 or 15
hours of experimentation. While not trivial, the time will be
well spent, particularly for those who want to incorporate
existing LATEX material into their presentations.

Below is some example syntax that could form the
basis of a simple beamer presentation. Of course, those
seeking all the details should read the beamer manual,
which is quite comprehensive.

\documentclass{beamer}

\usetheme{Madrid}

\title{Our First \textsc{beamer} Presentation}

\author{Ian Yohai}

\begin{document}

\begin{frame}

\titlepage

\end{frame}

\begin{frame}

\frametitle{The First Slide}

\begin{itemize}[<+->]

\item The first bullet point.

\item Now let’s try something more fancy.

\uncover<+->{This line

will only be revealed after the previous one.}

\item We can include equations, too.

\begin{align*}

\beta=(X’X)^{-1}X’y

\end{align*}

\item The last bullet point on this slide.

\end{itemize}

\end{frame}

\end{document}

Much of the syntax looks quite similar to the article
class in LATEX, with the first exception being that the
beamer class is specified instead. In this case, I have spec-
ified the Madrid theme, which is a relatively simple one as
themes go. Madrid creates a wide header at the top of each
slide containing the title of the slide, and also contains a
footer that consists of the author’s name, the title of the
presentation, and a helpful counter that indicates the cur-
rent slide number out of the total number of slides. The
theme has a rather soothing blue on white color scheme. As
I noted earlier, there are many other options if this theme
proves to be either too busy or too simple.

You may have also noticed the begin{frame} and
end{frame} syntax. Each slide is roughly equivalent to one
frame,4 and hence all the substantive material should be
placed between the two commands. Not surprisingly, the
frametitle command specifies the title of the slide. The
itemize environment works the same as in a standard LATEX
document, except the [<+->] syntax specifies that I want

3Again, details are available in the beamer manual. Modifying or creating a theme basically requires setting options for headers, footers,
sidebars, colors, and font types.

4Technically a frame can span two or more slides, but most purposes it is convenient just to think of a frame as one slide.

The Political Methodologist, vol. 14, no. 1 21

each item to be shown one at a time, rather than all at
once. This little trick saves the user from having to use the
uncover<+-> command for each item. To reveal a portion
of an item after the rest, I also use uncover<+-> within the
itemize environment.

Obviously any introduction presented here will
merely scratch the surface, but I hope I have demonstrated
that elementary features in beamer are not difficult to use
if you have prior knowledge of LATEX. There are a few other
minor details that will have to be learned through exper-
imentation. For example, you may be familiar with the
verbatim commands that tells LATEX to print text exactly
as it is entered. This is useful when the text contains sym-
bols such as $ or % that would normally be read by LATEX
as commands. To use the verbatim option in beamer, you
have to specify the [fragile] option when you begin the
frame.5 Needless to say, that particular little oddity was
not clear to me until reading the manual, but overall the
transition was quite smooth.

Finally, you may be wondering how a beamer

presentation is actually displayed. When compiled with
pdflatex, the output is simply a pdf file. Since pdf viewers
are available for nearly all platforms, including Windows,
OSX, and Linux, viewing the presentation is quite easy.
This is an especially nice feature when traveling to confer-
ences where the available operating system may be different
than on your own personal machine.

How to Get BEAMER
If I have not scared you away already, the

latest version of beamer can be downloaded from
http://sourceforge.net/projects/latex-beamer. You
should also download the associated PGF and XCOLOR

packages, which contain additional files that are needed to
produce a presentation. Installation instructions will de-
pend on the platform on which you run LATEX, but some
basic information is provided in the beamer manual.

Book Review

Review of Keith T. Poole

Spatial Models of Parliamentary Voting

Joshua D. Clinton
Princeton University
clinton@princeton.edu

Spatial Models of Parliamentary Voting. Keith T. Poole.
Cambridge University Press, New York, 2006, 248 pages.
$24.99, ISBN 0521617472 (paperback); $65.00, ISBN
0521851947 (hardcover).

In recent years, the use of ideal point estimates has
exploded. No longer used simply to measure the prefer-
ences of members of Congress, ideal points are now widely
used in many studies of American politics to analyze state
legislatures (e.g., Aldrich and Battista 2002; Wright and
Schaffner 2002) and historical assemblies such as the Con-
federation Congress (Jenkins 2000) and the Continental
Congress. Moreover, the application of ideal point mod-
els is no longer restricted to the legislative arena; appli-
cations use ideal points to measure preferences for voters
(e.g., Lewis 2001), justices (e.g., Martin and Quinn 2002),
presidents (e.g., McCarty and Poole 1995; Poole 1998) and
executive agencies (e.g., Bertelli and Grose 2003). Nor is
the usage restricted to the analysis of American politics, as
the technology has also been used to analyze voting behav-

ior in both comparative (e.g., Londregan 2000; Morgenstern
2004) and international (e.g., UN (e.g., Voeten 2000; 2004)
and the European Parliament (e.g., Hix, Noury and Roland
2006; Hix 2006) institutions. Ideal points offer more than
just the promise of characterizing the political environment,
they are also prominently used to test theories of lawmak-
ing (e.g., Cox and McCubbins 2005) and delegation (Ep-
stein and O’Halloran 1999) as well as test accounts of party
pressure (e.g., Groseclose and Snyder 2000; McCarty, Poole
and Rosenthal 2001) and strategic voting (e.g., Clinton and
Meirowitz 2004). That is, whereas roll call voting behavior
was first used to characterize the amount of party influence
in the legislature (e.g., Lowell 1902; Stuart 1928), roll call
analysis now typically involves the estimation of ideal points
for use in testing the predictions of formal theories.

Given their ever-increasing use, it is critical that po-
litical scientists understand the benefits and limitations of
ideal points. To this end, Keith Poole offers Spatial Mod-
els of Parliamentary Voting. Spatial Models largely focuses

5Apparently this is necessary so that overlays work properly with verbatim text.

22 The Political Methodologist, vol. 14, no. 1

on: 1] outlining how behavioral voting models can be used
to derive statistical voting models, and 2] discussing the
computation and interpretation of the resulting ideal point
estimates.

The fundamental point of the book – at least in my
interpretation – is a point worth reiterating: “Simply push-
ing a matrix of roll call data through a computer program
does not itself produce a meaningful picture” (4). Spatial
Models consistently and coherently argues that the statisti-
cal models used to analyze roll calls are necessarily models of
legislator behavior and that the appropriateness of resulting
ideal point estimates depends critically on an underlying be-
havioral model. Spatial Models is an important and notable
book precisely because it provides a detailed presentation
of many of the most popular models used to estimate ideal
points in political science.

Spatial Models differentiates itself from Poole’s prior
work on the analysis of roll calls (see, for example, Poole
(2000; 2001) and Appendix A of Congress: A Political-
Economic History of Roll Call Voting (1997) with Howard
Rosenthal) in two important ways.

First, the book presents statistical models in much
greater detail. Readers who may have found earlier expo-
sitions too quick should take comfort in the fact that the
models receive a much more discursive treatment in Spatial
Models. For example, Poole pays particular attention to
discussing the geometric interpretation of ideal point esti-
mators and the algorithms used to compute estimates. The
detailed descriptions and justifications will be welcomed by
scholars making use of the technology and the estimates.1

That said, the book does assume a strong familiarity with
linear algebra and maximum likelihood.

Second, Spatial Models describes the connections and
differences between the various models used to estimate
ideal points and the relationship between the statistical
models and the underlying behavioral models of voting. For
example, in Chapter 2, Poole starts with a discussion of the
analysis of perfect spatial voting then moves to the analysis
of voting behavior in the presence of voting errors in later
chapters. In so doing, he establishes how maximizing the
classification of votes and the probability of observing votes
yields different estimators.2 The book nicely illustrates how
different assumptions lead to different estimators – for ex-
ample, why the Optimal Classification estimator may some-
times be more appropriate for analyzing voting behavior
than the probabilistic models depending on the reasonabil-
ity of the parametric error assumptions (e.g., Rosenthal and
Voeten 2004).As Poole notes in the introduction “the spatial
theory of voting is a theory of behavior that states if a set of

assumptions holds, then voters should behave in a certain
way and we should observe certain types of outcomes. It is
a theory that makes predictions that can be tested” (9).

Spatial Models is not a substantive book in terms of
providing and testing different models of legislator behavior,
nor does it discuss why roll calls may or may not be rele-
vant for particular applications. Although there are hints in
the introductory and concluding chapters of a larger argu-
ment regarding the constraints that cognitive capacity may
place on the dimensionality of a decision space, the book is
focused almost exclusively on methodological and computa-
tional issues raised in the analysis of voting behavior. It is
very much a manual for ideal point estimation.

The book proceeds in a sensible and straightforward
manner – it starts with a discussion of error-less voting and
concludes with clever applications using ideal points to test
the impact of changing parties, retirement and redistricting
on legislators’ voting behavior. To provide a more nuanced
account of the book it is useful to briefly consider the con-
tent of the more important chapters.

Chapter 2 discusses roll call voting if voting is per-
fect (i.e., there is no error present and members always vote
correctly). Chapter 3 builds on this framework and dis-
cusses what happens in the presence of voting errors and
how to generate an estimator based on the correct classifi-
cation of observed votes. The Optimal Classification (OC)
algorithm Poole proposes is discussed in great detail and
the presentation illustrates how the geometry and spatial
models discussed in Chapter 2 can be used to generate an
estimator.

Chapter 4 discusses the implications of maximizing
the probability of observing member choices rather than the
correct classification of votes. This results in the standard
probabilistic spatial model underlying most uses of ideal
point estimates. Poole discusses the models and estimation
of: NOMINATE, Quadratic-Normal, Heckman-Snyder, and
the Bayesian simulation approach. In so doing, he notes
the similarities and differences between the estimators – a
useful discussion for scholars interested in deciding which
off-the-shelf model to use. This chapter should be required
reading for any scholar making use of these methods or their
estimates.

Chapter 5 focuses largely on “under-the-hood” (or,
more accurately, inside the computer chassis) computing is-
sues. Poole discusses issues such as assessing model fit, gen-
erating starting values, the complications raised by impos-
ing constraints, and how to determine the dimensionality
of the space. The chapter consists largely of rules of thumb
Poole has acquired throughout his lengthy career. Although

1On a lighter note, this reviewer appreciates (finally!) knowing the basis for some of the more obscure naming conventions Poole sometimes
uses in his code (see, for example, fn. 4 in Chapter 3.)

2In fact, Spatial Models is partially an intellectual history of the use and development of ideal point estimation techniques in political science.
Discussions of how the models were refined in light of technological advances and alternative behavioral models are sprinkled throughout the book.

The Political Methodologist, vol. 14, no. 1 23

largely of interest to those seeking to program their own
estimators, it is also useful for scholars interested in com-
puting their own estimates and assessing model fit and the
dimensionality of the space.

Chapter 6 (“Conducting Natural Experiments with
Roll Calls”) contains a nice discussion of how ideal point
estimates can be used to directly test accounts of legisla-
tive behavior. As ideal point estimates are possible only as
a consequence of assuming a particular behavioral model,
Poole illustrates how the resulting estimates can be used to
assess theories of legislative behavior. Specifically, Poole ex-
amines whether voting behavior changes for members who
switch parties, for members whose district is redistricted,
or for members who decide to retire. The discussion nicely
notes the benefits and potential pitfalls of the “natural ex-
periment” approach and, subject to the caveats Poole notes,
the chapter should provide scholars with a tool useful for in-
vestigating behavior in the face of institutional or electoral
change.

In sum, Spatial Models should be required reading
for all users of ideal point estimates. At a minimum, every
user of NOMINATE (and its variants) should read Chapter
4 and every user of OC should read Chapter 3. In fact, given
the prevalence with which ideal point estimates are used in
political science – in no small part due to Poole’s many con-
tributions – the discipline would benefit from a much larger
audience. As instructors of the next generation of scholars,
political methodologists should certainly use this book to
teach the uses (and abuses) of ideal point estimates and the
importance of moving from assumed behavioral models to
estimates with testable predictions.3 The book is probably
most appropriate for use in an advanced class populated by
graduate students with a familiarity with maximum likeli-
hood and linear algebra.

The underlying message of Spatial Models that “any-
one can construct a spatial map...but the maps are worthless
unless the user understands both the spatial theory that the
computer program embodies and the politics of the legisla-
ture that produced the roll calls” (pg. 209) is an important
point with broad implications. By providing a detailed dis-
cussion of the former, the book makes an important contri-
bution while charting a path for future research.

References

Aldrich, John H. and James S. Coleman Battista. 2002.

“Conditional Party Government in the States,”

American Journal of Political Science, 46(1): 164-72.

Bertelli, Anthony M. and Christian R. Grose. 2003. “A

Bayesian Analysis of Senate Votes on Administrative

Appointments,” Texas A & M working paper.

Clinton, Joshua D., and Adam Meirowitz. 2004.

“Testing Accounts of Legislative Strategic Voting:

The Compromise of 1790,” American Journal of

Political Science, 48(4):675-89.

Cox, Gary W. and Mathew D. McCubbins. 2005.

Setting the Agenda: Responsible Party Government

in the US House of Representatives. NY,

NY:Cambridge University Press.

Epstein, David and Sharyn O’Halloran. 1999.

Delegating Powers: A Transaction Cost Politics

Approach to Policy Making Under Separate Powers,

NY,NY: Cambridge University Press.

Groseclose, Tim and James M. Snyder Jr.

2000.“Estimating Party Influence in Congressional

Roll-Call Voting,” American Journal of Political

Science, 44(2) 193-211.

Hix, Simon, Abdul Noury, and Gerrard Roland. 2006

“Dimensions of Politics in the European Parliament,”

American Journal of Political Science, 50(2):494-511.

Hix, Simon. 2006 Democratic Politics in the European

Parliament, NY,NY: Cambridge University Press.

Jenkins, Jeffrey A. “Examining the Robustness of

Ideological Voting: Evidence from the Confederate

House of Representatives,” American Journal of

Political Science, 44(4):811-22.

Lewis, Jeffrey B. 2001. “Estimating Voter Preference

Distributions from Individual-Level Voting Data,”

Political Analyis, 9(3):275-97.

Londregan, John. 2000.Legislative Institutions and

Ideology in Chile. NY,NY: Cambridge University

Press.

Lowell, Lawrence A. 1902. “The Influence of Party

Upon Legislation in England and America,” Annual

Report of the American Historical Association for

1901 Washington DC: AHA pp. 321-542.

Martin, Andrew D. and Kevin M. Quinn. 2002.

“Dynamic Ideal Point Estimation via Markov Chain

3As a side note, Poole’s recounting of the development of the methods of roll call analysis in political science also serves as a nice illustration
of scientific progress. Spatial Models recounts how political scientists have worked to develop and refine a set of tools that are currently used in
almost every subfield of political science.

24 The Political Methodologist, vol. 14, no. 1

Monte Carlo for the U.S. Supreme Court, 1953-1999”

Political Analysis, 10(2):134-53.

McCarty, Nolan M. And Keith T. Poole. 1995. “Veto

Power and Legislation: An Empirical Analysis of

Executive and Legislative Bargaining from 1961 to

1986,” Journal of Law, Economics & Organization,

11(2):282-312.

McCarty, Nolan M., Keith T. Poole and Howard

Rosenthal. 2001. “The Hunt for Party Discipline in

Congress,” American Political Science Review

95(3):673-687.

Morgenstern, Scott. 2004. Patterns of Legislative

Politics: Roll Call Voting in the United States and

Latin America’s Southern Cone, Cambridge

University Press:NY,NY.

Poole, Keith T. 1998 “Recovering a Basic Space for a set

of Issue Scales,” American Journal of Poltical

Science, 42(3):964-93.

Poole, Keith T. 2000. ”Non-parametric Analysis of

Binary Choice Data,” Political Analysis 8(3):211-37.

Poole, Keith T. 2001. ”The Geometry of

Multidimensional Quadratic Utility in Models of

Parliamentary Roll Call Voting,” Political Analysis,

9(3):211-26.

Poole, Keith T. and Howard Rosenthal. 1997. Congress:

A Political-Economic History of Roll Call Voting,

Oxford University Press: NY, NY.

Rice, Stuart A. 1928 Quantitative Methods in Politics,

NY,NY: Knopf.

Rosenthal, Howard and Erik Voeten. 2004. “Analyzing

Roll Calls with Perfect Spatial Voting: France

1946-1958,” American Journal of Political Science

48(3):620-32.

Voeten, Erik. 2000. “Clashes in the Assembly,”

International Organization, 54(2): 185-217.

Voeten, Erik. 2004. “Resisting the Lonely Superpower:

Responses of States in the United Nations to U.S.

Dominance,” Journal of Politics, 66(3):729-54.

Wright, Gerald C. and Brian F. Schaffner. 2002. “The

Influence of Party: Evidence from the State

Legislatures,” American Political Science Review,

96(2):367-79.

Section Activities

A note from our Section President

Please join us for our annual business meeting, which is held
at the APSA meetings. The date is Saturday, September 2,
2006. Location information is not yet available but will be
posted on Polmeth or check your program. The Long Range
Planning Committee will be presenting its first report at
the meeting. Jim Granato (jgranato@mail.la.utexas.edu)
is the chair of the committee. (A full list of all com-
mittees and their members is available on Polmeth at
http://polmeth.wustl.edu/society.php). The purpose
of the inaugural report is to explore opportunities for broad-
ening participation in the activities and mission of the Polit-
ical Methodology Society and to consider the format of the
annual meeting. Our annual awards will also be presented
at the business meeting.

I would like to thank Langche Zeng, University of
California, San Diego, for putting together the Political
Methodology Section’s APSA panels. Our section is spon-
soring three of the fifteen working groups at the APSA meet-
ing (http://www.apsanet.org/section_584.cfm). Ken

Cousins, University of Maryland, is the coordinator for the
working group on Social Network Analysis, Rebecca Mor-
ton, New York University, is the coordinator for Experi-
ments, Causality, and the Study of Politics, and Stephen
Purpura, Harvard University, is the coordinator for Auto-
mated Content Analysis and Computer Annotation. We
appreciate their ingenuity for organizing these intellectual
adventures.

The search for the successor editor(s) for TPM is un-
derway. Adam Berinsky, Michael Herron, and Jeffery Lewis
will soon step down as editors. We thank Adam, Michael,
and Jeff for their service to the section. TPM is widely read
by members of the section and we appreciate their high stan-
dards. Larry Bartels (bartels@Princeton.EDU) is chairing
the search committee. Nancy Burns, Jon Pevehouse, and
Christopher Zorn are the other committee members. If you
have a nomination, please email one of the committee mem-
bers. Self nominations are welcomed.

Jan Box-Steffensmeier
The Ohio State University

The Political Methodologist, vol. 14, no. 1 25

Announcements

Announcement - Association of Religion
Data Archives

The Association of Religion Data Archives (ARDA), lo-
cated at http://www.thearda.com, provides free access to
high quality quantitative data on religion. The ARDA al-
lows you to interactively explore American and international
data using online features for generating national profiles,
maps, church membership overviews, denominational her-
itage trees, tables, charts, and other summary reports. Over

400 data files are available for online preview (including the
International Social Survey Program and multiple years of
the General Social Survey) and virtually all can be down-
loaded free of charge. The ARDA has also developed a series
of tools for education. Learning modules provide structured
class assignments and the many online tools allow students
to explore religion across the globe or in their own back-
yard. Housed in the Social Science Research Institute at
the Pennsylvania State University, the ARDA is funded by
the Lilly Endowment and the John Templeton Foundation.

26 The Political Methodologist, vol. 14, no. 1

The Political Methodologist, vol. 14, no. 1 27

The Political Methodologist

Department of Political Science
Massachusetts Institute of Technology
Cambridge, MA 02139

Nonprofit Org.

U.S. Postage

Paid

MIT

The Political Methodologist is the newsletter of the Po-
litical Methodology Section of the American Political
Science Association. Copyright 2006, American Po-
litical Science Association. All rights reserved. The
support of the MIT Department of Political Science
in helping to defray the editorial and production costs
of the newsletter is gratefully acknowledged.

Subscriptions to TPM are free to mem-
bers of the APSA’s Methodology Sec-
tion. Please contact APSA (202 483-2512,
http://www.apsanet.org/about/membership-form-1.cfm)to
join the section. Dues are $25.00 per year and include
a free subscription to Political Analysis, the quarterly
journal of the section.

Submissions to TPM are always welcome. Ar-
ticles should be sent to the editor by e-mail
(berinsky@mit.edu) if possible. Alternatively, sub-
missions can be made on diskette as plain ascii files
sent to Adam J. Berinsky, MIT Department of Po-
litical Science, 77 Massachusetts Avenue, Cambridge,
MA 02139 E53-459. LATEX format files are especially
encouraged. See the TPM web-site,
http://polmeth.wustl.edu/tpm.html, for the latest
information and for downloadable versions of previous
issues of The Political Methodologist.

TPM was produced using LATEX on a PC running
MikTex and WinEdt.

President: Janet M. Box-Steffensmeier
The Ohio State University
jboxstef@osu.edu

Vice President: Philip A. Schrodt
University of Kansas
schrodt@ku.edu

Treasurer: Jonathan Katz
California Institute of Technology
jkatz@hss.caltech.edu

Member-at-Large: Wendy Tam Cho
Northwestern University
wktc@northwestern.edu

Political Analysis Editor: Bob Erikson
Columbia University
rse14@columbia.edu

